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ABSTRACT 

The use of biometrics is an evolving component in 

today’s society.  Fingerprint recognition continues to be 

one of the most widely used biometric systems.  This thesis 

explores the various steps present in a fingerprint 

recognition system.  The study develops a working algorithm 

to extract fingerprint minutiae from an input fingerprint 

image.  This stage incorporates a variety of image pre-

processing steps necessary for accurate minutiae extraction 

and includes two different methods of ridge thinning.  

Next, it implements a procedure for matching sets of 

minutiae data.  This process goes through all possible 

alignments of the datasets and returns the matching score 

for the best possible alignment.  Finally, it conducts a 

series of matching experiments to compare the performance 

of the two different thinning methods considered.  Results 

show that thinning by the central line method produces 

better False Non-match Rates and False Match Rates than 

those obtained through thinning by the block filter method. 
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EXECUTIVE SUMMARY 

Biometrics is the study of automatically recognizing 

humans by means of inherently unique physical or behavioral 

characteristics.  Currently, one of the most widespread 

biometrics is fingerprint recognition.  The study of 

fingerprint attributes dates back to the 1600s, and the 

first automated fingerprint recognition systems began to be 

developed in the 1960s.  Even so, the application of 

fingerprint recognition continues to expand in our society.  

From laptop computers to office buildings, these systems 

are used as a convenient way of restricting access to 

authorized users. 

A fingerprint is comprised of a pattern of lines, 

known as ridges.  The spaces between individual ridges are 

referred to as valleys.  As a ridge progresses, it can 

either come to an end, or it can split into two ridges.  

The location where a ridge comes to an end is known as a 

termination, and the location where a ridge divides into 

two separate ridges is called a bifurcation.  Terminations 

and bifurcations are the two basic types of minutiae, which 

are the points of interest within a fingerprint.  By 

detecting the minutiae in a fingerprint, an effective 

matching process can be implemented. 

The main objective of this research is to create a 

fingerprint recognition system using the MATLAB 

environment.  Essentially, this study involves reliably 

extracting minutiae from a fingerprint image and comparing 

this information to previously defined minutiae data.  The 
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overall process is split into three primary steps: image 

pre-processing, minutiae extraction, and minutiae matching. 

• Image Pre-Processing 

The first step involves converting the original 

grayscale image to a black-and-white image.  Known as 

binarization, this step applies a threshold to the pixels 

in the grayscale image, where any pixel with a value above 

a user-specified threshold gets assigned a value of one, 

whereas any pixel with a value below the threshold gets 

assigned a value of zero.  To ensure minutiae details 

extracted in later steps are accurate, the binarization 

process requires careful selection of a threshold value 

that does not eliminate ridge information and does not 

produce false ridge structures. 

The next phase in the image pre-processing stage 

involves thinning, i.e., reducing the width of each ridge 

to one pixel.  Two different thinning methods were examined 

in this research.  The first is known as block filter 

thinning and was developed from scratch in the study.  This 

method preserves pixels along the outer boundaries of the 

ridges by deleting those pixels that lie within a three-by-

three pixel block beneath the outer pixels on each ridge.  

There are several stages in this thinning phase designed to 

remove spurious segments generated during the initial block 

filtering process.  Meanwhile, the second thinning method 

considered in the study attempts to thin the ridges to 

their central lines only, thereby ensuring that no ridge 

information has been lost in the thinning process. 
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• Minutiae Extraction 

The second step in the overall fingerprint recognition 

process involves extracting the minutiae information from 

the images.  The minutiae extraction process is applied to 

the image with ridges reduced to a width of one pixel and 

unwanted noise removed.  This detection step involves 

scanning the image to locate fingerprint terminations and 

bifurcations.  The next stage in the minutiae extraction 

process involves computing the orientation angle for each 

identified minutia.  Specifically, the orientation angle 

for a termination is defined as the angle between the 

horizontal and the ridge direction as it ends.  The 

orientation angle for a bifurcation is defined as the angle 

between the horizontal and the direction of the original 

ridge moving away from the divergence. 

At that point, only the minutiae information needs to 

be stored for later matching.  Original fingerprint images 

are no longer needed, which significantly decreases storage 

requirements.  In this study, the minutiae information is 

stored matrix-wise, with each row representing a different 

minutia.  Column one and two of this matrix represent the 

row and column position of the minutiae within the image, 

respectively.  Column three stores the orientation angle of 

the minutiae, and column four indicates the type of 

minutiae. 

• Minutiae Matching 

The third step in the overall fingerprint recognition 

process involves matching sets of minutiae data.  During 

the recognition phase, an input image is processed and its 

minutiae information matched against fingerprint minutiae 
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information from authorized users, known as templates.  

Note that there is likely to be some degree of rotational 

or displacement difference between the input and template 

image.  The processing scheme considered in this study 

takes this into account and implements the matching 

processing in a polar coordinate system.  By doing so, the 

robustness of the verification scheme is increased to 

handle displacements between input and template images.  

The next process in this stage involves computing 

matching scores between input and template images, which 

represent the similarity between the two sets of data.  In 

this system, the matching score ranges from zero to one, 

where a matching score of zero and one represent a complete 

mismatch and perfect match between the input and template, 

respectively.  This matching score is compared to the 

system threshold to arrive at the final decision.  The 

input and template fingerprints are determined to be from 

the same finger when the matching score is greater than the 

threshold.  Conversely, the input and template fingerprints 

are determined to be from different fingers when the 

matching score is less than the threshold. 

• Simulation 

A database of fingerprints was generated using the 

SFINGE software to test the overall system.  For each 

fingerprint, a template was created by sending the image 

through the previous discussed steps until the matrix of 

minutiae data was obtained.  Also, a different impression 

for each fingerprint was generated by performing horizontal 

shifts left and right, vertical shifts up and down, and 

clockwise and counterclockwise rotations. 
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Creating the different impressions simulates variable 

finger alignments in successive login attempts.  A series 

of matching processes using the two thinning methods was 

conducted between the generated images and the templates.  

Results show that the central line thinning produces better 

overall results, and that the block filter thinning 

method’s performance degraded significantly when dealing 

with rotated input images.  For most rotated input images, 

using the block filter thinning method caused the system to 

incorrectly conclude that two fingerprints from the same 

finger were from different fingers.  The central line 

thinning method, however, worked well for all variations of 

input images.  This shows that this method is rotational 

invariant and will accurately locate the minutiae 

regardless of the input alignment.  Therefore, the central 

line thinning method should be used for the thinning 

process in a real world system. 

As a whole, the developed fingerprint recognition 

system works well.  From ridge thinning, to minutiae 

extraction, to minutiae matching, the system produces 

reliable results.  In the coming years, biometrics will 

continue to play a larger role in society, and fingerprint 

recognition will likely remain at the center of this 

expansion. 
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I. INTRODUCTION  

The use of biometrics continues to evolve in many 

areas of society.  Fingerprint readers can be found on 

laptop computers, iris scanners are being installed at 

locations of heightened security, and voice recognition 

software is being incorporated into automobiles.  Whatever 

the reason for the biometric system, it is evident that 

their use will continue to develop during the coming years.  

This chapter presents an overview of the basic concepts 

behind biometric systems. 

A. BACKGROUND 

In order for a human physiological or behavioral 

characteristic to be used as a beneficial biometric trait, 

it must satisfy four criteria.  First of all, it needs to 

be universal, with each person in possession of the given 

characteristic.  Secondly, it should be a distinctive 

quality, meaning there should be a significant distinction 

in the characteristic between any two given persons.  Next, 

there needs to be a certain permanence inherent to the 

feature, i.e., the measured elements should remain 

relatively invariable over a period of time.  Last of all, 

the attribute should be easy to collect and measured 

quantitatively [Jain, Ross, & Prabhakar, 2004].  Other 

issues, such as performance, acceptability, and 

circumvention, need to be examined for a system that 

implements personal recognition with biometrics.  The 

performance of a system concerns the accuracy and speed of 

recognition.  Meanwhile, the acceptability of a system 

refers to the willingness of the general population to 

allow use of a particular biometric in everyday life.  
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Finally, circumvention deals with how easy it is to fool 

the system through spoofing.  Therefore, a good biometric 

system will have high accuracy and speed, be widely 

accepted among the public, and have high resistance to 

fraudulent attacks [Jain, Ross, & Prabhakar, 2004]. 

There are two main operating modes for biometric 

systems.  The first, and simplest mode, is called 

verification.  Here, it is necessary for the person to 

claim an identity through an identification number, user 

name, or other means.  The system then gathers the input 

data and compares it to the template data previously stored 

for that person.  This comparison is a one-to-one 

comparison, and the system is only trying to verify that 

the person attempting to gain access is truly who he claims 

to be.  If the input data does not match the template data, 

the system will deny access.  The second operating mode is 

called identification.  In this mode, the system will 

compare the input data to all sets of template data already 

stored.  This operation is a one-to-many comparison, and 

there is no need for the person to claim an initial 

identity.  If the input data matches any of the template 

data sets, the system will allow access [Jain, Ross, & 

Prabhakar, 2004].  Note that the identification mode is 

more computationally intensive than verification mode since 

it requires conducting a comparison with each template. 

B. OBJECTIVE 

The objective of this research is to develop a 

fingerprint recognition system using MATLAB.  Beginning 

with an input image, the system processes the data and 

collects the identifying features of the fingerprint.  

Next, it compares this information to previously stored 
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information from various fingerprints.  After making the 

comparison, the system determines if the input image 

matches the data of a fingerprint already in the database.  

A few different processing methods are used to extract the 

identifying features, and the performance of each technique 

is analyzed. 

C. THESIS ORGANIZATION 

The remainder of this thesis provides a detailed 

description of the research conducted.  Chapter II presents 

background information on biometrics in general, while 

Chapter III focuses specifically on fingerprints.  Next, 

Chapter IV provides a detailed account of the developed 

minutiae detection process.  From here, Chapter V discusses 

the minutiae matching process used in this system.  Chapter 

VI features the experimental results obtained from the 

complete system.  Finally, conclusions and recommendations 

are presented in Chapter VII. 
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II. BIOMETRICS 

This chapter introduces a variety of common biometric 

systems in use today or currently being developed.  It then 

proceeds to discuss some of the most important issues 

concerning biometrics in general. 

A. SYSTEMS IN USE TODAY 

1. Fingerprint 

Fingerprint recognition has been present for a few 

hundred years.  Nowadays, the technology in this area has 

reached a point where the cost of purchasing a fingerprint 

scanner is very affordable.  For this reason, these systems 

are becoming more widespread in a variety of applications.  

As seen in Figure 2.1, Cell phones, PDAs, and personal 

computers are a few examples of items incorporating 

fingerprint recognition to increase user security. 

 

 
Figure 2.1. Fingerprint sensors in everyday 

products. (From: [Mainguet, 2006]) 
 

Fingerprint systems are generally best utilized in 

verification systems or small-scale identification systems 

because a large-scale identification system requires 

extensive computational resources under current products.  

In addition, a large system would undoubtedly encounter 

some fingerprints that are unsuitable for use, due to cuts 
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or other defects [Jain, Ross, & Prabhakar, 2004].  

Therefore, cell phones and computers, which both 

potentially have a small number of users, are ideal 

products for this technology. 

2. Iris 

Iris recognition has taken on greater interest in 

recent years.  As this technology advances, purchasing 

these systems has become more affordable.  These systems 

are attractive because the pattern variability of the iris 

among different persons is extremely large.  Thus, these 

systems can be used on a larger scale with a small 

possibility of incorrectly matching an imposter.  Also, the 

iris is well protected from the environment and remains 

stable over time.  In terms of localizing the iris from a 

face, its distinct shape allows for precise and reliable 

isolation [Daugman, 2004].  Figure 2.2 shows the unique 

iris pattern data extracted from a sample input. 

 

 
Figure 2.2. Example of an iris pattern. (From: 

[Daugman, 2004]) 
 

The accuracy and speed of current iris systems allows 

the possibility of implementing this technique in a large-

scale system.  The iris of each person is distinctive, and 
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identical twins even have different patterns.  Since it is 

extremely difficult to alter the texture of the iris 

through surgery, it would be difficult for someone to 

circumvent the system.  Along the same line, it is 

relatively easy for the system to detect when an artificial 

iris, such as a specially made contact lens, is being used 

in an attempt to gain access [Jain, Ross, & Prabhakar, 

2004].  Thus, as time goes on, it is likely that iris 

recognition systems will be widely used in many areas of 

society. 

3. Voice 

Voice recognition offers a dynamic range of processing 

possibilities.  Unlike fingerprint and iris recognition, 

which are limited to a few techniques, voice recognition 

has a variety of methods for implementation.  Specifically, 

this flexibility is evident in a system that forces a user 

to speak a phrase that is different for each attempt.  This 

versatility makes it much more difficult for someone to 

spoof the system.  At the same time, it requires the system 

to have a more advanced detection algorithm [Faundez-Zanuy 

& Monte-Moreno, 2005]. 

Another reason voice-based systems are dynamic is 

because voice is a combination of physiological and 

behavioral biometrics.  The physiological component is 

governed by physical characteristics, which are invariant 

for an individual, while the behavioral element can change 

over time.  This combination offers a wider range of 

possibilities among the general population.  A phone-based 

speaker recognition system provides a practical 

application, as it allows for recognition from a remote 

location, where collection of other biometric data may not 
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be possible.  Speech features, however, are sensitive to 

background noise, different microphones, and degradation 

over a communication channel, and care should be taken to 

ensure the quality of the signal remains at an acceptable 

level [Jain, Ross, & Prabhakar, 2004]. 

4. Face 

There have been significant achievements in the face 

recognition field over the past few years.  Thanks to these 

advancements, this problem appears to eventually become 

technologically feasible as well as economically realistic.  

Several companies now offer face recognition software that 

can produce high-accuracy results with a database of over 

1000 people.  In addition, current research involves 

developing more robust approaches that accounts for changes 

in lighting, expression, and aging, where potential 

variations for a given person are illustrated in Figure 

2.3.  Also, other problem areas being investigated include 

dealing with glasses, facial hair, and makeup [Pentland & 

Choudhury, 2000]. 

 

 
Figure 2.3. Facial image variations amongst the 
same subject. (From: [Gao & Leung, 2002]) 

 

A facial recognition system has numerous advantages 

over other biometric systems.  First of all, the system can 

be unobtrusive, operating at a large distance from the 

subject.  Also, it does not require the person to have a 

set interaction with the system.  The camera only needs to 

capture a useable image of the face.  Next, the system is 
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usually passive and can operate on fairly low power.  

Finally, a face recognition system would probably be widely 

accepted by the general public.  Since we perform facial 

recognition in our daily life, an automated system that 

performs the same task is likely to have more support than 

other, more intrusive biometrics [Pentland & Choudhury, 

2000]. 

5. Gait 

Gait-based recognition involves identifying a person’s 

walking style.  Although these systems are currently very 

limited, there is a significant amount of research being 

conducted in this area.  At this time, however, it is 

unknown if the obtainable gait parameters provide enough 

discrimination for a system to be applied on a large scale.  

Furthermore, studies have shown that gait changes over time 

and is also affected by clothes, footwear, walking 

surfaces, and other conditions.  Figure 2.4 outlines the 

various stages of a gait cycle.  [Boulgouris, Hatzinakos, & 

Plataniotis, 2005]. 

 

 
Figure 2.4. Samples recorded from a gait cycle. 

(From: [Boulgouris, Hatzinakos, & Plataniotis, 2005]) 
 

Acquisition of gait is similar to the process used for 

acquiring facial images and can be performed from a 

distance without requiring the subject’s cooperation.  As a 

result, this system can be implemented covertly for 
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enhanced security.  Furthermore, it is difficult to hide or 

fake one’s gait, particularly when the presence of the 

system is unknown.  A disadvantage to gait recognition is 

that it uses a sequence of video footage, making the 

process input intensive and computationally expensive 

[Jain, Ross, & Prabhakar, 2004]. 

6. Hand Geometry 

Hand geometry systems are one of the most basic 

biometric systems in use today.  A two-dimensional system 

can be implemented with a simple document scanner or 

digital camera, as these systems only measure the distances 

between various points on the hand.  Meanwhile, a three-

dimensional system provides more information and greater 

reliability.  These systems, however, require a more 

expensive collection device than the inexpensive scanners 

that can be used in a two-dimensional system.  An example 

of a commercial three-dimensional scanner is shown in 

Figure 2.5.  As seen in this image, the physical size of 

the scanner limits its application in portable devices. 

 

 
Figure 2.5. Commercial three-dimensional scanner. 

(From: [Faundez-Zanuy, 2005]) 
 

The primary advantage of hand geometry systems is that 

they are simple and inexpensive to use.  Also, poor weather 

and individual anomalies such as dry skin or cuts along the 
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hand do not appear to negatively affect the system.  The 

geometry of the hand, however, is not a very distinctive 

quality.  In addition, wearing jewelry or other items on 

the fingers may adversely affect the system’s performance.  

Finally, personal limitations in dexterity due to arthritis 

or other medical condition also have a negative impact.  

Therefore, these systems generally should not be used in a 

large-scale environment [Jain, Ross, & Prabhakar, 2004]. 

7. Multimodal 

Multimodal systems employ more than one biometric 

recognition technique to arrive at a final decision.  These 

systems may be necessary to ensure accurate performance in 

large dataset applications.  Combining several biometrics 

in one system allows for improved performance as each 

individual biometric has its own strengths and weaknesses.  

Using more than one biometric also provides more diversity 

in cases where it is not possible to obtain a particular 

characteristic for a person at a given time.  Although 

acquiring more measurements increases the cost and 

computational requirements, the extra data allows for much 

greater performance [Ko, 2005]. 
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Figure 2.6. Multibiometric categories. (From: [Ko, 

2005]) 
 

Similar to multimodal systems, there are several other 

techniques aimed at improving the performance of a 

biometric system, as outlined in Figure 2.6.  Multi-

algorithmic techniques acquire a single sample from one 

sensor and process this signal with two or more different 

algorithms.  Multi-instance systems use a sensor to obtain 

data for different instances of the same biometric, such as 

capturing fingerprints from different fingers of the same 

person.  Multi-sensorial systems sample the same biometric 

trait with two or more different sensors, such as scanning 

a fingerprint using both optical and capacitance scanners 

[Ko, 2005]. 

B. ISSUES WITH BIOMETRICS 

1. Security 

Maintaining the integrity of a biometric system is a 

critical issue.  This concept deals with ensuring that the 

input to the system is in fact presented by its legitimate 
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owner, and also assuring that the input pattern is matched 

with an authentic template pattern.  There are numerous 

ways someone can attempt to bypass a biometric system, all 

of which endeavor to attack a weakness in the system.  The 

primary weaknesses in a system arise from the fact that 

biometrics are not secrets.  In addition, the biometric 

characteristics of a person can not be altered.  When a 

biometric identifier has been compromised, an attacker can 

use this information to develop a fraudulent dataset to 

fool the system into accepting his access.  As a result, 

the algorithm may not be able to detect falsified data when 

the matching process is completely autonomous and without 

human monitoring [Jain, Pankanti, Prabhakar, Hong, & Ross, 

2004]. 

Along the same lines, once someone’s biometric 

information has been compromised, it is not possible to 

change this information.  Unlike a password or PIN number, 

it is not possible for someone to alter his natural 

characteristics.  For example, fingerprints remain the same 

throughout an individual’s lifetime and can not be changed 

when they have been accessed and used for fraudulent 

purposes.  A current technique to combat fraudulent claims 

is known as liveness detection.  In this technique, the 

system can determine if the input measurements are 

originating from an inanimate object instead of the actual 

person [Jain, Pankanti, Prabhakar, Hong, & Ross, 2004]. 

2. Privacy 

Another important issue in the biometric field 

concerns maintaining privacy.  Whenever a person has a 

biometric identifier recorded, the individual loses some 

anonymity that cannot be recovered.  Critics of biometrics 
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envision this information being used in coming years by the 

government to monitor actions and behaviors of all 

citizens.  While this idea is not likely to be implemented 

in the near future, its possibility leads many to be 

cautious of giving up biometric identifiers.  Also, it is 

possible that some biometrics capture more information than 

one’s identity.  Some schemes may provide additional 

information, such as a person’s health and medical history.    

Although this idea is currently undeveloped, its potential 

impact would likely invoke concern among the public 

[Woodward, 1997]. 

Nevertheless, biometrics can be used as a highly 

effective way to maintain individual privacy despite the 

negative issues associated with their uses.  If one’s 

personal information can only be accessed through a 

biometric matching process, this information will remain 

much safer than if its access were controlled by a standard 

password.  Similarly, the possibility of a thief being able 

to use a stolen card would greatly diminish if a credit 

card could only be used when supplied with the correct 

fingerprint.  Therefore, these advantages tend to outweigh 

the concerns over losing a degree of personal privacy by 

providing biometric data.  In addition, many products today 

do not even store the template data in its original form.  

Instead, the data is stored in an encrypted form that is 

only recoverable by that specific system to prevent an 

attacker from using the template information in its own 

system [Jain, Ross, & Prabhakar, 2004]. 

3. Accuracy 

There are two basic types of errors that occur in a 

biometric system.  The first error occurs when the system 
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mistakes measurements from two different persons to be from 

the same person.  This is called a false match, or 

sometimes termed a false acceptance.  The second type of 

error is known as a false non-match and happens when the 

system mistakes measurements from the same person to be 

from two different persons.  This scenario is also referred 

to as a false rejection [Jain, Ross, & Prabhakar, 2004]. 

In terms of probabilistic quantities, the False Match 

Rate (FMR) is the probability that the system will decide 

to allow access to an imposter.  Meanwhile, the False Non-

match Rate (FNMR) represents the probability that the 

system denies access to an approved user.  In each 

biometric system, there is a tradeoff between the FMR and 

FNMR because both of these values are functions of what is 

called the “system threshold”.  When a system makes a 

comparison between an input image and an image already 

stored in the database, it calculates a matching score for 

the two images.  This matching score provides a numerical 

value of the similarity between the two images.  A high 

matching score indicates high similarity, whereas a low 

matching score indicates low similarity between the images.  

The matching score is compared to the system threshold, 

which is a predefined level in the system.  The images are 

classified as a match when the matching score is greater 

than the system threshold, and a non-match is produced when 

the matching score is less than the system threshold.  

Modifying the threshold has an effect on the performance of 

the system.  When the threshold is decreased, meaning there 

is a less stringent matching score, the FMR will increase 

while the FNMR decreases.  In such cases, more imposter 

matches will occur since it is easier to produce a match 
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with the lower threshold.  At the same time, the lower 

threshold allows for fewer false non-matches for approved 

users.  Similarly, as the threshold increases, the FMR 

decreases while the FNMR increases.  This would be the case 

for a high security application, where a system is setup to 

greatly reduce the number of false matches.  As a side 

effect, the increased threshold causes more false non-

matches due to the stricter matching requirements. 

The performance of a system is commonly expressed in a 

receiver operating characteristic (ROC) curve.  In this 

graph, the FMR is plotted against the FNMR of the system 

for various threshold values.  As shown in Figure 2.7, as 

the FNMR increases, the FMR of the system decreases.  

Conversely, decreasing the FNMR results in an increase to 

the FMR [Jain, Ross, & Prabhakar, 2004]. 

 

 
Figure 2.7. Receiver Operating Characteristic (ROC) 
curve. (From: [Jain, Ross, & Prabhakar, 2004]) 

 
4. Scale 

A final issue concerning biometric systems is the 

number of individuals enrolled in the database.  For each 

individual, there is a unique set of template data that 

corresponds to that person’s identity.  In a verification 

system, the number of people enrolled does not have a 
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significant impact because the match is performed solely on 

a one-to-one basis.  In an identification system, however, 

the matching process is more complex and is greatly 

affected by the number of enrollees as the system must 

perform a one-to-one comparison for each set of template 

data.  For a very large system, this process can take a 

significant amount of time.  One solution to reduce this 

time involves categorizing the template data based on a 

significant pattern.  In the case of a fingerprint system, 

the initial categorization may divide the templates into 

classes based on their global patterns.  Although this 

procedure is difficult to implement in practice, it serves 

as a foundation for reducing the scale of the system (Jain, 

Pankanti, Prabhakar, Hong, & Ross, 2004). 

C. CONCLUSION 

Biometric applications continue to evolve in all areas 

of society, and care needs to be taken to ensure a specific 

biometric is suited for a given application.  More complex 

biometrics, such as iris and fingerprint recognition, may 

be better suited for a large-scale application than a more 

basic biometric would, such as hand geometry.  Meanwhile, 

it is still unknown what capabilities will be obtainable 

through biometrics currently under development, 

specifically face and gait recognition.  In any case, all 

biometrics raise issues which need to be examined.  The 

following chapter will introduce the foundations of one the 

most widespread biometrics: the fingerprint. 
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III. FINGERPRINT MATCHING 

This chapter presents a brief history of the evolution 

of fingerprint identification.  It also provides the basic 

information regarding the composition of a fingerprint.  

Finally, it discusses a variety of matching techniques used 

today. 

A. HISTORY 

Fingerprints have been scientifically studied for a 

number of years in our society.  The characteristics of 

fingerprints were studied as early as the 1600s.  

Meanwhile, using fingerprints as a means of identification 

first transpired in the mid-1800s.  Sir William Herschel, 

in 1859, discovered that fingerprints do not change over 

time and that each pattern is unique to an individual.  

With these findings, he was the first to implement a system 

using fingerprints and handprints to identify an individual 

in 1877.  At the time, his system was a simple one-to-one 

verification process.  By 1896, police forces in India 

realized the benefit of using fingerprints to identify 

criminals, and they began collecting the fingerprints of 

prisoners along with their other measurements 

[International Biometric Group, 2003]. 

With a growing database of fingerprint images, it soon 

became desirable to have an efficient manner of classifying 

the various images.  Between 1896 and 1897, Sir Edward 

Henry developed the Henry Classification System, which 

quickly found worldwide acceptance within a few years.  

This system allows for logical categorization of a complete 

set of the ten fingerprint images for a person.  By 

establishing groupings based on fingerprint pattern types, 
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the Henry System greatly reduces the effort of searching a 

large database.  Until the mid-1990s, many organizations 

continued to use the Henry Classification System to store 

their physical files of fingerprint images [International 

Biometric Group, 2003]. 

As fingerprints began to be utilized in more fields, 

the number of requests for fingerprint matching began to 

increase on a daily basis.  At the same time, the size of 

the databases continued to expand with each passing day.  

Therefore, it soon became difficult for teams of 

fingerprint experts to provide accurate results in a timely 

manner.  In the early 1960s, the FBI, Home Office in the 

United Kingdom, and Paris Police Department began to devote 

a large amount of resources in developing automatic 

fingerprint identification systems.  These systems allowed 

for an improvement in operational productivity among law 

enforcement agencies.  At the same time, the automated 

systems reduced funding requirements to hire and train 

human fingerprint experts.  Today, automatic fingerprint 

recognition technology can be found in a wide range of 

civilian applications [Maltoni, Maio, Jain, & Prabhakar, 

2003]. 

B. FINGERPRINT DETAILS 

A fingerprint pattern is comprised of a sequence of 

ridges and valleys.  In a fingerprint image, the ridges 

appear as dark lines while the valleys are the light areas 

between the ridges.  A cut or burn to a finger does not 

affect the underlying ridge structure, and the original 

pattern will be reproduced when new skin grows.  Ridges and 

valleys generally run parallel to each other, and their 

patterns can be analyzed on a global and local level.  At 
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the global level, the fingerprint image will have one or 

more regions where the ridge lines have a distinctive 

shape.  These shapes are usually characterized by areas of 

high curvature or frequent ridge endings and are known as 

singular regions.  The three basic types of these singular 

regions are loop, delta, and whorl, examples of which are 

shown in Figure 3.1.  Many matching algorithms use the 

center of the highest loop type singularity, known as the 

core, to pre-align fingerprint images for better results.  

As shown in Figure 3.2, these three basic singularities 

help form the five major classes of fingerprints [Maltoni, 

Maio, Jain, & Prabhakar, 2003]. 

 

 
Figure 3.1. Singular regions and core points. 

(From: [Maltoni, Maio, Jain, & Prabhakar, 2003]) 
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Figure 3.2. Examples of fingerprint classes. (From: 

[Maltoni, Maio, Jain, & Prabhakar, 2003]) 
 

While the global level allows for a general 

classification of fingerprints, analyzing the image at the 

local level provides a significant amount of detail.  These 

details are obtained by observing the locations where a 

ridge becomes discontinuous, known as minutiae points.  The 

most common types of minutiae are shown in Figure 3.3.  In 

general, a ridge can either come to an end, which is called 

a termination, or it can split into two ridges, which is 

called a bifurcation.  The other types of minutiae are 

slightly more complicated combinations of terminations and 

bifurcations.  For example, a lake is simply a sequence of 

two bifurcations in opposing directions, while an 

independent ridge features two separate terminations within 

a close distance.  The FBI minutiae-coordinate model 

considers only terminations and bifurcations within a 

fingerprint image.  In all, analyzing a fingerprint on the 

local level provides the necessary information to 

accurately distinguish one fingerprint from another. 
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Figure 3.3. Basic types of minutiae. (From: 
[Maltoni, Maio, Jain, & Prabhakar, 2003]) 

 
C. FINGERPRINT MATCHING TECHNIQUES 

1. Minutiae-Based 

There are several categories of fingerprint matching 

techniques.  One such category employs methods to extract 

minutiae from the fingerprint images, and then compares 

this data to the previously stored template data sets.  In 

most cases, the minutiae details are stored as sets of 

points in the two-dimensional plane.  For each minutia, the 

x- and y-coordinates indicating its location within the 

image are recorded.  Other stored parameters may include 

the orientation angle of each minutiae as well as the 

specific type of minutiae located.  Generally, minutiae-

based methods require a significant amount of pre-

processing to produce accurate results [Maltoni, Maio, 

Jain, & Prabhakar, 2003]. 

There are a variety of methods in use today for 

extracting the minutiae from a fingerprint.  One method 

involves thinning the fingerprint image, then performing a 

scan with a three pixel-by-three pixel block across the 

entire image.  This process will be explained in full 

detail in the upcoming Chapters.  Another method 
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incorporates a bank of filters in order to extract the 

minutiae.  Specifically, the region of interest gets 

filtered in eight different directions, which completely 

captures the local ridge characteristics using a bank of 

Gabor filters.  When the Gabor filters are properly tuned, 

they are able to remove noise while maintaining the true 

ridge and valley structures.  Since a minutiae point can be 

considered an anomaly among locally parallel ridges, these 

points can be detected after applying the bank of Gabor 

filters [Jain, Prabhakar, Hong, & Pankanti, 2000]. 

2. Image-Based 

Image-based techniques are another significant 

category of fingerprint matching.  These processes are 

appealing because they do not require a significant amount 

of pre-processing to produce acceptable results.  In most 

cases, the only pre-processing methods that are applied are 

a binarization and thinning phase.  Therefore, imaged-based 

techniques have a better computational efficiency than the 

standard minutiae-based techniques.  Also, for low quality 

fingerprint images, image-based techniques produce better 

results than minutiae extraction methods, where it may be 

difficult to reliably extract the actual minutiae points 

[Seow, Yeoh, Lai, & Abu, 2002]. 

An important component for image-based matching is 

dealing with rotation.  Since the input image might be 

oriented differently than the template image, it is 

necessary to apply a rotational correction to achieve the 

best results.  Many systems superimpose the input image 

with the template image and compute the correlation between 

corresponding pixel values for a variety of displacement 

and rotational values.  The maximum correlation value 
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produced in this process relates to the best possible 

alignment between the input and the template [Maltoni, 

Maio, Jain, & Prabhakar, 2003].  A similar technique 

involves using the phase components from two-dimensional 

Discrete Fourier Transforms of the images to determine the 

similarity between the two.  If the matching score exceeds 

the threshold for the system, the input and template are 

treated as a match [Ito et al., 2005].  In most cases, 

image-based techniques offer a good alternative when an 

input image is of poor quality. 

Another technique for an image-based fingerprint 

matching system involves wavelets, where fingerprint 

patterns are matched based on wavelet domain features.  A 

primary advantage to this approach is that these features 

can be directly extracted from the fingerprint image 

without applying any pre-processing steps.  Once the core 

point has been determined, a rectangular region surrounding 

the core is established, which is referred to as the 

central sub-image.  This area is then divided into non-

overlapping square blocks of uniform size.  From here, the 

wavelet decomposition is computed on each block, and its 

wavelet features are calculated.  Next, a global feature 

vector is formed, which includes the features extracted 

from each block of the central sub-image.  Once the feature 

extraction has been performed, it is possible to conduct a 

matching sequence with the template features.  The lower 

computational requirements of this process make using 

wavelet features attractive to a small-scale system [Tico, 

Immonen, Rämö, Kuosmanen, & Saarinen, 2001]. 
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3. Ridge Feature-Based 

In many images, minutiae extraction may be difficult 

to conduct in an efficient manner.  A low quality image 

containing a large amount of noise presents problems for 

minutiae-extracting algorithms.  In such a case, other 

options to acquire meaningful data from a fingerprint 

become necessary.  Analyzing various ridge features 

provides this versatility.  There are several features that 

are commonly examined in today’s systems, ranging from 

fairly basic to more advanced.  At the basic end, the 

physical size and shape of the external fingerprint 

silhouette can be computed.  Additionally, recording the 

number, type, and position of singular regions provides 

further information.  Although there is much variation to 

these numbers, this approach offers some data when little 

else can be extracted [Maltoni, Maio, Jain, & Prabhakar, 

2003]. 

On a slightly more advanced level, the spatial 

relationship and geometrical attributes of the ridge lines 

can be examined.  Also, gathering global and local texture 

information is another option.  A final ridge feature that 

can be analyzed is the location of sweat pores within the 

ridges.  Even though sweat pores are highly discriminant 

among the population, detecting them requires an advanced 

collection system, and their presence would most likely be 

unnoticeable in low quality images.  The basic ridge 

features, however, are obtainable from any quality image.  

Since minutiae-based methods require an image of good 

quality, ridge features offer an alternative for poor 

images.  Furthermore, ridge feature-based techniques do not 

have to be limited to images of poor quality.  Instead, 
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they can be used in conjunction with minutiae-based 

techniques for images of good quality.  With more data to 

be used in the matching process, the accuracy and 

robustness of a system would undoubtedly increase [Maltoni, 

Maio, Jain, & Prabhakar, 2003]. 

D. CONCLUSION 

The use of fingerprints for identification purposes 

has been present in our society for a number of years.  

Their characteristics can be analyzed on a global level as 

well as a local level.  While the global characteristics 

can provide a general classification, it is necessary to 

analyze a fingerprint on the local level to obtain 

distinctive classification details.  One technique used on 

the local level involves analyzing the minutiae points 

within a fingerprint.  This process will be examined in 

further detail in the following chapter. 
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IV. MINUTIAE DETECTION 

Accurate minutiae detection is an essential component 

for all minutiae-based fingerprint recognition systems.  

Without accurate minutiae detection, the results and 

performance of a system are not reliable.  This chapter 

explores the numerous techniques applied to achieve a 

dependable minutiae detection system. 

A. IMAGE PRE-PROCESSING 

It is first necessary to apply several pre-processing 

steps to the original fingerprint image to produce 

consistent results in the classic minutiae extraction 

procedure.  Such steps generally include image 

binarization, noise removal, and thinning.  In this thesis, 

we use the SFINGE software included in Maltoni, Maio, Jain, 

and Prabhakar (2003) to develop noise-free fingerprint 

images.  This eliminates the need for a sensor noise 

removal step and enables us to focus on the other steps 

involved in the minutiae detection process.  Note that 

studies have shown that fingerprint matching algorithms 

yields very similar performance results when applied to the 

synthetic fingerprints created by SFINGE as when applied to 

real fingerprint images [Maltoni, Maio, Jain, & Prabhakar, 

2003]. 

1. Binarization 

Image binarization is the process of turning a gray-

scale image to a black and white image.  In a gray-scale 

image, a pixel can take on 256 different intensity values 

while each pixel is assigned to be either black or white in 

a black and white image.  This conversion from gray-scale 

to black and white is performed by applying a threshold 
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value to the image.  In MATLAB, a value of one means the 

pixel is white, whereas a value of zero indicates the pixel 

is black.  For a gray-scale image, the pixels are decimal 

values between zero and one.  When a threshold is applied 

to an image, all pixel values are compared to the input 

threshold.  Any pixel values below the threshold are set to 

zero, and any values greater than the threshold are set to 

one.  By the end of this process, all pixel values within 

the image are either zero or one, and the image has been 

converted to binary format. 

A critical component in the binarization process is 

choosing a correct value for the threshold.  If the 

threshold is set too low, then the resulting binary image 

will primarily be comprised of white pixels.  Conversely, 

if the threshold is set too high, the resulting image will 

feature a large number of undesired black pixels.  Thus, 

the threshold must be selected carefully to ensure the data 

information is preserved after the binarization.  The 

threshold values used in this study were selected 

empirically by trial and error.  In addition, the synthetic 

fingerprints were generated with the absence of background 

noise, allowing for a more effective binarization process.  

An example of this process is shown in Figure 4.1. 
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Figure 4.1. Results of image binarization. 

 

 

As seen above, the binarization converts a gray-scale 

image to a purely black and white image.  It should be 

noted, however, that this process is not perfect, as some 

of the ridges near the boundary of the image have been 

turned to white.  Although these ridges can be preserved by 

simply increasing the value of the threshold, this action 

may also produce highly undesired results.  For example, 

increasing the threshold could change a pixel separating a 

ridge termination from a neighboring ridge from white to 

black.  This change would then make the termination appear 

to connect with the neighboring ridge, thus creating a 

false bifurcation where there should be a termination.  

Therefore, simply increasing the threshold is not a viable 

solution to preserve these ridges.  Furthermore, the 
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majority of these imperfections can be removed in a later 

step since these discontinuities only occur near the 

perimeter. 

2. Thinning 

After binarization, another major pre-processing 

technique applied to the image is thinning, which reduces 

the thickness of all ridge lines to a single pixel.  

Following thinning, the location and orientation of the 

minutiae should still be the same as in the original image 

to ensure accurate estimation of their locations.  There 

are a variety of thinning methods employed in today’s 

systems.  The first technique discussed, which involves 

thinning along the outer boundary of the ridges via a block 

filter, was developed from scratch during this study.  The 

second technique is an advanced method originally proposed 

by Ahmed and Ward (2002) that focuses on thinning the 

ridges to their central lines. 

a. Block Filtering 

This thinning method attempts to preserve the 

outermost pixels along each ridge.  First, a border of 

white pixels is place at the boundaries of the black and 

white image to ensure accurate implementation of the 

following steps.  As a result, all pixels within the first 

five rows, last five rows, first five columns, and last 

five columns are assigned a value of one.  The steps in the 

block filtering process commence following this.  Table 4.1 

outlines these steps and provides a brief description of 

the goal for each step. 
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Table 4.1. Steps in block filter process. 

 

• Step One: ridge width reduction 

This step involves applying a morphological 

process to the image to reduce the width of the ridges.  

The two basic morphological processes are erosion and 

dilation.  Dilation is an operation that thickens objects 

in a binary image, while erosion thins objects in a binary 

image.  In this step, a dilation process is used to thicken 

the area of the valleys in the fingerprint.  As a result of 
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dilating the valleys, the ridges are effectively eroded.  A 

conservative structuring element consisting of four ones 

arranged in a two-by-two square is used for the valley 

dilation to achieve some ridge width reduction while 

minimizing the amount of discontinuities formed.  Thus, the 

valley dilation causes the width of the ridges to be 

reduced by a slight amount.  Figure 4.2 displays the effect 

of implementing the valley dilation. 

 

 
Figure 4.2. Impact of performing valley dilation. 

 

• Step Two: passage of block filter 

The next step involves performing a pixel-by-

pixel scan for black pixels across the entire image.  Note 

that in MATLAB, image rows are numbered in increasing order 
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beginning with the very top of the image as row one.  

Similarly, columns are numbered in increasing order 

beginning with the leftmost side of the image as column 

one.  This initial scan begins with the pixel in row one 

and column one, and then continues to move to the adjacent 

column on the right.  When the scanning process reaches the 

last column of the image, it moves one row down and also 

resets to the first column and continues until it locates a 

black pixel.  At that point, the scheme turns the pixels 

contained in a three-by-three box adjacent to the located 

black pixel to white, beginning with the pixel diagonally 

down and to the right of the located black pixel.  The 

process is illustrated in Figure 4.3 below. 

 

 
Figure 4.3. Illustration of left to right block 
filtering on a magnified illustration of a ridge. 

 

The left to right scan continues until it covers 

the entire image.  Next, a similar scan is performed across 

the image from right to left beginning at the pixel in row 

one and the last column.  This scan moves to the adjacent 
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column on the left.  When the scanning process reaches the 

first column of the image, it moves one row down and also 

resets to the last column and continues until it locates a 

black pixel.  Upon detecting a black pixel, the scan stops 

and turns the pixels contained in a three-by-three box 

adjacent to the located black pixel to white, beginning 

with the pixel diagonally down and to the left.  Figure 4.4 

depicts this process. 

 

 
Figure 4.4. Illustration of right to left block 
filtering on a magnified illustration of a ridge. 

 

The right to left scan continues until all pixels 

in the image are covered.  Note that these two separate 

scans are needed because one scan by itself does not 

perform adequately on all regions of the fingerprint.  The 

different types of curvature within a fingerprint have an 

adverse effect during some portion of the scan.  Figure 4.5 

shows the results of the two separate scans across a sample 

fingerprint image. 
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Figure 4.5. Output of filtering in both directions. 

 

Figure 4.5 shows that the left to right scan 

works well on ridges that move up and to the right, whereas 

the right to left scan works well on ridges that move down 

and to the right.  In each case, the ridges in the good 

areas have been reduced to a width of one pixel.  

Therefore, combining the scans in such a way that preserves 

only the “good” regions will result in a complete 

fingerprint image thinned down to a one-pixel width.  As a 

result, the remaining steps combine the two scans to 

preserve only the “good” regions from each scan. 

• Step Three: removal of isolated noise 

To begin with, the first step in removing the 

unwanted segments commences by performing another pixel-by-

pixel scan across the entire image.  A detected black pixel 
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is placed at the center of a seven-by-seven box, and the 

entire perimeter of this box is analyzed.  At that point, 

the contents within the box are considered to be 

independent of all ridges in the fingerprint when all 

pixels located along the box perimeter are white.  

Therefore, the contents within the box are classified as 

“isolated noise” and are subsequently turned to white.  

Note that the contents within the box can not be classified 

as “isolated noise” but instead may belong to a larger 

ridge structure when at least one pixel along the perimeter 

is black.  Figure 4.6 illustrates this difference by 

showing two different seven-by-seven boxes.  Black pixels 

shown in the left box represent an isolated structure 

contained entirely within the box.  Therefore, these pixels 

will be deleted.  Note that one of the black pixels shown 

in the box on the right touches the perimeter.  As a 

result, none of the pixel values in this box are altered. 

 

 
Figure 4.6. Seven-by-seven pixel box for removing 

isolated noise. 

 



39 

• Step Four: scan combination 

Data from the two scans are added element by 

element after all potential “isolated noise” contributions 

have been removed from the two thinned images.  The 

resulting combined matrix, however, now has values of zero, 

one, and two.  A value of two means that the pixel from 

each scan was white, while a value of zero indicates the 

pixel from each scan was black.  Meanwhile, a value of one 

means that the pixel from one scan was black while the same 

pixel from the other scan was white.  As a result, the new 

matrix needs to be adjusted to represent a valid binary 

image containing only zeros and ones.  Specifically, all 

zeros and ones are assigned a value of zero (black pixel), 

and all twos are assigned a value of one (white pixel).  

Note that values equal to one in the combined matrix are 

assigned a value of zero in the binary image because one of 

the scans produced a black pixel at these locations.  This 

final adjustment can be accomplished by assigning a value 

of one to pixels with values found to be equal to two after 

this summation step, while all other values are transformed 

into zeros.  In doing so, the resulting new matrix has been 

converted to zeros and ones and the two scans combined into 

one image.   Combining the two scans contained in Figure 

4.5 after removing the “isolated noise” from each image 

produces the image shown in Figure 4.7. 
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Figure 4.7. Combined image from both scans shown in 

Figure 4.5 following isolated noise removal 
 

• Step Five: elimination of one pixel from 

two-by-two squares of black 

Next, a new scan is conducted on the combined 

image to detect two-by-two blocks of black pixels which 

represent a location where a ridge has not been thinned to 

a one-pixel width.  It is likely that some of these two-by-

two blocks were created by the combination of the previous 

scans.  This problem can be compensated for by changing one 

pixel within the block from black to white, which reduces 

the width at that particular point from two pixels to one.  

At the same time, this process needs to be implemented in a 

manner that preserves the overall ridge structure.  This 

operation can be performed by analyzing the pixels touching 

each individual black pixel.  Note that each black pixel 

touches the three other black pixels within the two-by-two 
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block.  Therefore, there are only five other pixels that 

contain useful information. 

 

 
Figure 4.8. Surrounding pixels in two-by-two block. 

 

In Figure 4.8, surrounding pixels to the two-by-

two block are shown as gray because they may either be 

black or white.  For each of the four pixels within the 

two-by-two block, the five pixels as outlined in Figure 4.8 

are analyzed.  In each case, the total number of black 

pixels in these five locations is recorded.  At this point, 

the pixel with the least amount of black pixels surrounding 

it is turned from black to white.  This pixel is deleted 

because it has the least amount of ridge information 

touching it, and its deletion will most likely preserve the 

overall ridge structure. 

• Step Six: removal of unwanted spurs 

At this point, the majority of the ridges have 

been reduced to a width of one-pixel.  Looking at Figure 

4.7, however, it should be evident that the overall ridge 

structure remains imperfect, due to the presence of short 

spurs jutting from several ridges.  A magnified sample of 

these unwanted spurs is shown in Figure 4.9. 
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Figure 4.9. Unwanted spurs along ridges. 

 

Upon observing these spurs, it becomes apparent 

that the end of the spur has the same characteristics as a 

ridge termination.  Furthermore, note that the point where 

the spur connects to the ridge has the same qualities as a 

ridge bifurcation.  This information is used in removing 

extraneous spurs.  At this point, detecting terminations 

and bifurcations in a thinned image needs to be considered.  

One possible approach for this process involves computing 

what is referred to as the crossing number for each black 

pixel in the thinned image.  As described in Maltoni, Maio, 

Jain, and Prabhakar (2003), the crossing number is defined 

as half the sum of differences between pairs of adjacent 

pixels that surround the given black pixel.  In general 

terms, this computation begins by looking at the eight sets 

of adjacent pixels, as illustrated in Figure 4.10. 
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Figure 4.10. Eight sets of adjacent pixels used in 

computing crossing number. 
 

Note that the difference between two adjacent 

pixels is equal to one when they are not of the same color.  

Conversely, this difference is zero when two pixels are of 

the same color.  This difference is individually computed 

for the eight sets of adjacent pixels illustrated in Figure 

4.10.  Next, the eight differences are added together, and 

the resultant sum is divided by two.  This value defines 

the crossing number for the black pixel at the center of 

the three-by-three pixel region.  The center pixel 

corresponds to a termination minutia when the crossing 

number is equal to one.  Similarly, the center pixel is the 

location of a bifurcation when the crossing number is 

greater than or equal to three, and it is an intermediate 

ridge point when the crossing number is equal to two.  

Figure 4.11 illustrates intra-ridge pixels, termination 

minutia, and bifurcation minutia as detected by the 

crossing number. 
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Figure 4.11. Visual examples of crossing number. (After: 

[Maltoni, Maio, Jain, & Prabhakar, 2003]) 

 

Therefore, the crossing number corresponding to 

each black pixel contained in the image is computed and 

used to delete unwanted spurs.  First, the process cycles 

through all termination points and begins to trace the 

associated ridges.  The ridge is determined to be an 

unwanted spur if the trace reaches a bifurcation point in 

less than twenty pixels.  In such a case, the black pixels 

that have been traced from the bifurcation to the starting 

termination are turned to white, thus deleting the spur.  

On the other hand, if the trace length reaches twenty 

pixels before arriving at a bifurcation, the ridge is 

determined to be a valid ridge structure, and no change is 

made to the pixels.  Figure 4.12 shows the result of 

applying this procedure. 
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Figure 4.12. Impact of removing spurs. 

 

• Step Seven: removal of duplicate horizontal 

and duplicate vertical lines 

Observe that the thinned image has a better 

resemblance of the desired image after removing the 

unwanted spurs.  Even so, there still may be a few problems 

that need to be taken into consideration, such as locations 

where a single ridge is represented by two horizontal lines 

or two vertical lines, as illustrated in Figure 4.13. 
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Figure 4.13. Duplicate horizontal and vertical lines. 

 

Although these problems do not occur in every 

thinned image, they do occur enough to warrant attention.  

To remove the duplicate horizontal lines, the image is 

first scanned for horizontal lines with a length of five 

pixels.  Upon locating one of these lines, the five rows 

immediately beneath this line are analyzed.  If one of 

these rows also has a line with a length of five pixels in 

the same column indices as the initial line detected, then 

it is classified as a duplicate horizontal line.  

Therefore, the line of five pixels in the southernmost row 

is turned from black to white.  Figure 4.14 displays this 

process. 
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Figure 4.14. Deleting duplicate horizontal lines. 

 

Once all duplicate horizontal lines have been 

accounted for, the resulting spurs can be deleted by 

applying the same process as before.  A different procedure 

is necessary, however, to deal with duplicate vertical 

lines.  Note that the duplicate vertical lines are longer 

segments that only connect in one place, while the 

duplicate horizontal lines are short segments that connect 

to the ridge in two places.  For conceptual purposes, they 

can be treated as very lengthy spurs.  Although they could 

be removed by simply increasing the maximum allowable trace 

length in the previous steps, doing so is not a recommended 

solution as it may result in unwillingly deleting a correct 

ridge that has a relatively short distance between a 

termination and bifurcation.  This problem is addressed 

differently, as follows.  The method begins by searching 

the thinned image for vertical lines with a length of ten 

pixels.  When one such line is located, the same rows in 

the three columns to the right are analyzed.  A duplicate 

vertical line exists when one of these columns also has a 

line with a length of ten pixels in the same rows.  At this 

point, the two vertical lines are traced downward.  The 
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trace continues until the ridge ends or a maximum trace 

length of forty pixels is reached, whichever comes first.  

As the traces are conducted, the total trace length is 

recorded for each segment.  After the traces conclude, the 

total trace lengths for the two segments are compared.  

Since the vertical line that is part of the correct ridge 

structure does not come to a sudden end, it should reach 

the maximum trace length.  Conversely, the vertical line 

that is the unwanted segment will reach an end before 

reaching the maximum trace length.  Thus, the segment that 

has the shorter trace length is determined to be the 

unwanted spur and is subsequently deleted.  Figure 4.15 

displays this deletion process. 

 
Figure 4.15. Deleting duplicate vertical lines. 

 

All the steps in the block thinning method have 

been executed once this phase is complete.  The final 

thinned image is shown in Figure 4.16. 



49 

 
Figure 4.16. Thinned image from block filtering. 

 

Note that the block filtering does an effective 

job of thinning the majority of the original image even 

though there are a few imperfect areas within the thinned 

image.  For example, some bifurcations in the original 

image appear as terminations in the thinned image. 

b. Central Line 

Central line thinning involves reducing the 

individual ridges to a width of one pixel at their central 

lines.  The rule-based algorithm developed for character 

recognition by Ahmed and Ward (2002) can be applied to a 

fingerprint image.  This scheme was studied because of its 

ability to effectively thin ridges.  One significant 

advantage of this method is that it produces the same 
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thinned symbols regardless of rotation.  This quality has 

specific appeal to a fingerprint recognition system, where 

it is likely the rotational orientation will be slightly 

different in successive login attempts.  Additionally, it 

is stated that their proposed method preserves the topology 

and does not produce any discontinuity.  These qualities 

are also important for an effective fingerprint thinning 

algorithm. 

This thinning method is iterative in nature.  At 

each iteration, the algorithm deletes those points that lie 

on the outer boundaries of the ridges, so long as the width 

of the ridge is greater than one pixel.  The pixel will not 

be deleted if the process results in a disconnected graph 

[Ahmed & Ward, 2002].  The deletion process begins by 

scanning the image for black pixels.  For each pixel, a 

check is performed to discover if it belongs to two pixels 

width in the vertical or horizontal directions.  This step 

is necessary to ensure the pixels on the extremities of 

zigzag diagonal lines are not deleted.  Figure 4.17 

outlines this check for the vertical direction, while 

Figure 4.18 shows the check for the horizontal direction.  

The twenty-one rules mentioned at the end of these checks 

are used to determine which scenario, if any, applies to 

the associated three pixel-by-three pixel neighborhood.  

The first twenty rules were originally proposed by Ahmed 

and Ward (2002), while the twenty-first rule was introduced 

by Patil, Suralkar, and Sheikh (2005) for specific 

application to fingerprint images.  This rule removes 

singular pixels, which are of interest in character  
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recognition but have no importance in fingerprint images.  

The twenty-one rules are shown in Figure 4.19 and will be 

discussed shortly.   

 

 
Figure 4.17. Two pixels width in vertical direction 

check. (After: [Ahmed & Ward, 2002]) 
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Figure 4.18. Two pixels width in horizontal direction 

check. (After: [Ahmed & Ward, 2002]) 
 

The twenty-one thinning rules are immediately 

applied if the pixel does not belong to a two pixels wide 

block in the vertical or horizontal direction.  When a 

neighborhood satisfies one of the rules on the left side of 

the arrow, the middle pixel is turned to white, as 

indicated by the resulting neighborhood to the right of the 

arrow. 
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Figure 4.19. Thinning rules. (After: [Ahmed & Ward, 

2002]) 

 

As stated previously, black pixels are denoted by 

a zero while white pixels are represented as a one.  The 

X’s are used to symbolize that the pixel can either be 

black or white.  In other words, it does not matter what 

the value of these pixels are when the rules are applied.  

If none of the rules are satisfied, the middle pixel 

remains unchanged.  The iteration continues, and the 

thinning progresses, until no changes occur from one 
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iteration to the next.  Once the iteration is complete, 

Patil, Suralkar, and Sheikh (2005) discovered that the 

process does not completely thin diagonal lines to a width 

of one pixel.  As a result, they proposed applying an 

additional set of rules to follow the thinning process 

proposed by Ahmed and Ward (2002), designed specifically 

for diagonal lines.  In applying these rules, the 

continuity of the ridges does not get changed, and the 

original structure and angle of the ridges remains the 

same.  The diagonal rules are depicted in Figure 4.20. 

 

 
Figure 4.20. Diagonal thinning rules. (After: [Patil, 

Suralkar, & Sheikh, 2005])  

 

After implementing the diagonal rules, the ridges 

of the fingerprint have been thinned to a one-pixel width 

at their central lines.  Figure 4.21 displays the 

transformation of the black and white image to the final 

thinned image through the various iterations. 
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Figure 4.21. The thinning process to central lines. 

 

In this visual example, the initial thinning is 

complete following the fourth iteration.  The fifth 

iteration, however, is still conducted.  Upon determining 

the fifth iteration produces no changes to the results from  
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the fourth iteration, the 21-rule thinning process stops, 

and the diagonal thinning rules are applied to produce the 

final thinned image. 

3. Final Noise Removal 

Following the thinning process, a final stage of noise 

removal is conducted to eliminate noise produced from the 

binarization and thinning processes.  This stage focuses on 

removing the short island segments near the outer 

boundaries of the image which were produced during the 

binarization phase.  Such segments need to be removed 

because they do not represent the true ridge structure of 

the original fingerprint.  The process for deleting these 

segments is very similar to the process used in deleting 

the spurs produced from thinning by the block filter.  It 

begins by detecting the terminations in the final thinned 

image.  Starting at each termination, the corresponding 

ridge is traced one pixel at a time.  Next, the segment is 

classified as a short island segment and is deleted if 

another termination is reached before the maximum trace 

length of seventeen pixels is reached.  Conversely, the 

segment is said to be part of a complete ridge and not 

altered when the maximum trace length is reached without 

encountering another termination.  Figure 4.22 shows the 

results of this process on an image that has been thinned 

by the central line technique. 
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Figure 4.22. Impact of deleting short island segments. 

 
 
B. MINUTIAE EXTRACTION 

The minutiae information can be extracted and stored 

after the image pre-processing is complete.  This 

information consists of the following for each minutia:   

• Location within the image 

• Orientation angle 

• Type (termination or bifurcation) 

As described earlier, the crossing number is used 

again to locate the terminations and bifurcations within 

the final thinned image.  In this process, the locations 

where the ridges end at the outer boundaries of the image 

are classified as terminations.  In the true sense, 

however, these locations are not unique termination 

minutiae.  Instead, they only appear as terminations 

because the dimensions of the image force each ridge to 

come to and end.  Knowing this, these locations should not 

be recorded as minutiae within the fingerprint.  One way to 
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eliminate such locations involves creating an ellipse to 

only select minutiae points inside the fingerprint image.  

The center of the ellipse is established by locating the 

minimum and maximum rows and columns that contain a ridge 

pixel, then calculating the row and column that lie halfway 

between these extremes.  The major axis of this ellipse was 

empirically selected as 94% of the difference between the 

minimum and maximum rows containing a ridge pixel, whereas 

the minor axis was empirically selected as 86% of the 

difference between the minimum and maximum columns with a 

ridge pixel.  Figure 4.23 shows the ellipse generated for a 

certain fingerprint. 

 

 
Figure 4.23. Ellipse generated to reject ridge endings 

along the boundaries of an image. 
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Using this method, any termination or bifurcation that 

lies outside of the ellipse gets ignored.  After this step 

is complete, the angles of the remaining minutiae are 

calculated.  A termination angle is the angle between the 

horizontal and the direction of the ridge, while a 

bifurcation angle is the angle between the horizontal and 

the direction of the valley ending between the bifurcation.  

Figure 4.24 provides a visual description of these 

definitions. 

 

 
Figure 4.24. Definition of minutiae angles. 

 

To compute the termination angles, the row and column 

indices for each termination are first recorded.  Beginning 

at each termination, the corresponding ridge is traced 

backwards by five pixels, and the resulting row and column 

indices are stored.  Care must be taken to ensure the angle 

is calculated correctly.  Figure 4.25 summarizes the rules 

developed by the author in calculating each angle. 
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Figure 4.25. Rules for calculating termination angles. 

 

These rules allow for 360° coverage while using the 

inverse tangent function.  The process for computing the 

bifurcation angles uses the same set of rules in a slightly 
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different manner.  In particular, it takes advantage of 

what is known as termination/bifurcation duality [Maltoni, 

Maio, Jain, & Prabhakar, 2003].  This property says that a 

termination in a black and white image corresponds to a 

bifurcation in its negative image.  Similarly, a 

bifurcation in the black and white image is in the same 

position as a termination in the negative image.  Figure 

4.26 shows this relationship. 

 

 
Figure 4.26. Termination/bifurcation duality. (After: 

[Maltoni, Maio, Jain, & Prabhakar, 2003]) 
 

As a result, the original black and white image is 

inverted to obtain the bifurcation angles.  The negative 

image is then thinned using the methods described 

previously.  At this point, the terminations in the thinned 

image are detected using the crossing number once again.  

The angle of each termination is then computed by applying 

the rules shown in Figure 4.25.  From here, positions of 

the bifurcations in the original image are compared to the 
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positions of the terminations in the inverted image.  Each 

bifurcation angle is determined by locating the termination 

in the inverted image that lies nearest the position of the 

bifurcation.  The angle of this termination is then 

assigned as the angle of the corresponding bifurcation.  

Note that the angle is assigned an arbitrary angle of 0° 

when no terminations in the inverted image lie within a 

distance of 100 pixels of a bifurcation.  This step was 

added to ensure an angle is assigned to every bifurcation, 

regardless of unforeseen errors. 

A final step is applied in an effort to remove 

unwanted termination minutiae along the outer boundaries of 

the image.  If the input fingerprint is slightly rotated, 

some terminations may lie within the previously created 

ellipse.  In such a case, these minutiae will not be 

deleted, and further processing is applied to remove them 

as these points are not true ridge terminations.  Note that 

terminations residing within a fingerprint are surrounded 

by other ridges, while terminations along the outer 

boundaries are not completely surrounded.  Thus, the angles 

of the terminations are used to conduct a search for nearby 

ridges.  A horizontal search is performed when the angle is 

between 45° and 135° or between 225° and 315°.  Here, the 

twenty columns to the immediate right and left of the 

termination are examined.  If a ridge is not detected in 

one of the directions, the termination is deleted because 

it lies on the boundary of the image.  In a similar manner, 

a vertical search is conducted when the termination angle 

is between 135° and 225° or between 315° and 45°.  This 

search looks at the twenty rows immediately above and below 

the termination.  If either direction does not locate a 
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ridge, the termination under examination is deleted.  

Otherwise, the termination is not modified when the search 

locates a ridge in both directions. 

Following this step, the position and angle of the 

final set of minutiae is known.  For visual purposes, this 

data is plotted to observe the detection ability of the 

various thinning methods.  In the plot, terminations are 

denoted by a square while bifurcations are displayed as 

diamonds.  Also, the angle of each minutia is shown by a 

short line segment jutting out of the squares and diamonds.  

Figure 4.27 displays the minutiae position and orientation 

produced by block filter thinning and central line 

thinning.  Figure 4.28 shows the minutiae data from block 

filter thinning superimposed on the original fingerprint 

image, and Figure 4.29 displays the same for the central 

line thinning results. 

 

 
Figure 4.27. Display of minutiae detected by block filter 

and central line thinning. 
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Figure 4.28. Magnified display of minutiae detected by 

block filter thinning superimposed on original fingerprint.  
Terminations denoted by a square, bifurcations denoted by a 

diamond. 
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Figure 4.29. Magnified display of minutiae detected by 

central line thinning superimposed on original fingerprint.  
Terminations denoted by a square, bifurcations denoted by a 

diamond. 
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Both thinning methods appear to do an adequate job at 

locating the minutiae.  The difference in detected minutiae 

shown in Figure 4.28 and 4.29 arises simply because the two 

thinning methods produce slightly different results.  An 

error that occurs in the thinning process leads to the 

minutiae extraction process detecting minutiae that do not 

correspond with the original ridge structure.  Although the 

block filtering produces some spurious minutiae, the 

majority of the detected minutiae are accurate and near the 

correct location.  Meanwhile, the central line thinning 

does an excellent job of maintaining the ridge integrity of 

the original image.  The performance of each technique will 

be examined in the coming chapters. 

C. CONCLUSION 

Image pre-processing is the most critical step for 

reliable minutiae detection.  Accurate estimation of the 

overall ridge structure in the final thinned image is an 

essential step needed to ensure accurate estimation of the 

fingerprint minutiae.  Errors in the thinning process 

result in errors in the minutiae extraction process, making 

the fingerprint identification step essentially worthless 

when such errors occur.  The following chapter discusses 

minutiae data matching issues.  
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V. MINUTIAE MATCHING 

The next essential step in the fingerprint recognition 

process is the comparison of minutiae data.  Much like the 

minutiae extraction steps, reliable matching is necessary 

for an effective system.  This chapter discusses a matching 

process used in comparing minutiae data. 

A. DATA FORMAT 

First, the data extracted in the previous steps must 

be stored in a consistent format to ensure proper 

comparisons are conducted.  In the approach considered in 

this thesis, minutiae data from a single fingerprint is 

stored in a matrix format, where the number of rows 

represents the number of minutiae points.  The number of 

columns in this matrix is fixed at a value of four.  The 

first column indicates the row index of each minutia, and 

the second column indicates the column index of the 

minutiae in the fingerprint image.  The third column 

provides the angle orientation of the minutiae, and the 

fourth column indicates the type of minutiae, where values 

of one or two are used to indicate a termination or 

bifurcation, respectively.  Table 5.1 provides a sample of 

this matrix of data extracted for each fingerprint. 
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Table 5.1. Sample matrix of minutiae data. 

   
 

B. MATCHING PROCESS 

The matching process involves comparing one set of 

minutiae data to another set.  In most cases, this process 

compares an input data set to a previously stored data set 

with a known identity, referred to as a template.  The 

template is created during the enrollment process, when a 

user presents a finger for the system to collect the data 

from.  This information is then stored as the defining 

characteristics for that particular user.   

The method introduced in the following steps is based 

on the matching process presented by Luo, Tian, and Wu 

(2000).  This process begins by creating a matrix, called 

rotatevalues in the code included in Appendix A, of the 

orientation angle difference between each template 

minutiae, Tk (1≤k≤NT), and each input minutiae, Im (1≤m≤NI).  

Here, NT and NI represent the total number of minutiae in 

the template and input sets, respectively.  The value at 

rotatevalues(k,m) represents the difference between the 

orientation angles of Tk and Im.  Tk and Im represent the 

extracted data in all the columns of row k and row m in the 

template and input matrices, respectively. 
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Next, template and input minutiae are selected as 

reference points for their respective data sets.  This 

process is performed for each possible combination of 

template and input minutiae points.  It begins by selecting 

the first minutiae point in the template matrix, T1, along 

with the first minutiae point in the input matrix, I1.  Once 

the matching procedure for these reference points is 

complete, it performs the same process using T1 and I2 as 

reference points.  After all combinations of Tk and Tm have 

been used as reference points, the matching process 

concludes. 

In each case, the reference points are used to convert 

the remaining data points to polar coordinates.  Equation 

5.1 shows the procedure followed for converting the 

template minutiae from row and column indices to polar 

coordinates:   
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Converting to polar coordinates allows for an 

effective match process to be conducted regardless of any 

rotational or translational displacement between the 

template and input images.  The variable T
kr  represents the 

radial distance, T
kφ  represents the radial angle, and T

kθ  

represents the orientation of the kth minutia, all with 
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respect to the reference minutiae.  Also, the variables T
krow  

and T
kcol  refer to the row and column indices of the kth 

minutia in the template matrix, while T
refrow  and T

refcol  refer 

to the indices of the reference minutia currently being 

used for the template matrix.  Equation 5.2 provides the 

polar coordinate transformation for the input minutiae:   
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Instead of comparing row and column indices, the 

comparison is now based on the relative position of the 

minutiae with regards to the reference minutiae.  The 

relative positions of the minutiae remain the same even as 

the absolute position of the fingerprint image changes.  As 

a result, converting the data to polar coordinates in the 

matching process creates a more robust system since the 

alignment of an input image is likely to be different than 

the alignment of the template image. 

Following the conversion to polar coordinates, the 

resulting template and input data sets are sent through a 

matching process, which compares the polar data of each 

input minutiae to each template minutiae.  For each 

possible combination, the difference between the template 

and input data is computed for the radial distance, radial 

angle, and orientation angle.  Two minutiae are determined 

to match if all of the following criteria are met:  
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• The absolute radial distance difference is less 

than a tolerance of three pixels. 

• The absolute radial angle difference is less than 

a tolerance of five degrees. 

• The absolute orientation angle difference is less 

than a tolerance of ten degrees. 

• The two minutiae are the same type. 

Throughout this process, a counter keeps track of the 

total number of minutiae that are matched.  Once a minutia 

in the template is matched to a minutia in the input, its 

type is assigned a value of three to prevent it from being 

matched to more than one minutia.  Next, a matching score 

representing the similarity between the datasets is 

calculated for each combination of reference points using 

the total number of minutiae matched in each case.  

Equation 5.3 shows the formula for calculating the matching 

score when Tk and Im are being used as reference minutiae: 

 
NI)(NT,max

minutiae matching#),( =mkorematchingsc , (5.3) 

where NT and NI represent the total number of minutiae in 

the template and input matrices, respectively.  The 

denominator is assigned the maximum value between NT and 

NI.  By this definition, the matching score takes on a 

value between zero and one.  A matching score of one 

indicates the data matches perfectly, whereas a matching 

score of zero occurs when there are no matching minutiae.  

The denominator is defined in this manner to thwart efforts 

of an imposter attempting to gain access by preventing 

someone from simply creating a fraudulent input consisting 

of an incredibly large number of minutiae in hopes of 
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randomly matching only a few of them.  Since the number of 

matching minutiae can never exceed the minimum value 

between NT and NI, dividing this number by a large NI 

number would result in a low matching score, even if a lot 

of minutiae matches are formed. 

Matching scores have been calculated for every 

possible combination of reference points and stored in the 

matchingscore matrix.  The final matching score between the 

template and input datasets is selected as the maximum 

value in the matchingscore matrix.  Note that this maximum 

value represents the best possible alignment between the 

two sets of data, and the input is considered to come from 

the same finger as that represented in the template image 

when the matching score is greater than a previously user-

defined threshold value.  The input image is found to come 

from a different fingerprint than that represented in the 

current template when the matching score is below the 

threshold value. 

C. CONCLUSION 

The polar coordinate system discussed in this section 

allows matching to be performed regardless of the template 

and input image orientation.  This characteristic is a 

significant advantage because it allows for slight 

variations in finger positions during successive 

recognition attempts as the input image does not have to be 

aligned exactly as it was during the enrollment process.  

The following chapter presents experimental results of the 

complete fingerprint recognition system. 
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VI. EXPERIMENTAL RESULTS 

This chapter presents the experimental procedures used 

in testing the developed fingerprint recognition system.  

It also provides the results obtained from the various 

tests and discusses the thinning method that produces the 

best results. 

A. SYNTHETIC DATABASE GENERATION 

As stated previously, the SFINGE software was used to 

develop fingerprints free of sensor noise.  A total of 

sixty base images were created for the database.  These 

images covered the five major classes of fingerprints 

outlined in Figure 3.2.  Additionally, the width of the 

ridges was not held constant.  This allowed the database to 

more accurately represent a sample of fingerprints from the 

general population.  In order to conduct an efficient test, 

a file naming convention was developed for the images.  The 

base images were assigned a name in the format 

‘s00##_1.jpg’, where ## represents the image number ranging 

from 00 to 59.  

Next, a series of transformations was applied to 

generate new images of the same fingerprint using these 

base images.  These transformations included horizontal 

shifts to the left and right, vertical shifts up and down, 

and clockwise and counterclockwise rotations.  The 

horizontal and vertical shifts were on the order of forty 

to eighty pixels, and the rotations ranged from five to 

fifteen degrees.  Table 6.1 outlines the transformations 

and their corresponding filename convention. 
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Table 6.1. Filename convention for transformations. 

 

All transformations were applied to each original 

image.  Starting with sixty original images, this process 

produced seven total impressions for each fingerprint.  

Thus, the final database consisted of 420 synthetically 

generated fingerprints. 

B. TEMPLATE CREATION 

Using the original images, two templates were created 

for each of the sixty fingerprints.  This was performed by 

implementing all the steps outlined in Chapter IV on each 

fingerprint image.  Since the fingerprints were sent 

through the minutiae extraction process, the templates were 

simply a matrix of data organized in the same format as 

that shown in Table 5.1.  One set of templates used the 

central line thinning method and was saved using the 

filename ‘s00##_t.mat’, while the other templates were 

generated using the block filter thinning method and given 

the name ‘s00##_t2.mat’.  By creating separate templates 

for the two thinning processes, a performance evaluation 

between the two methods could be conducted. 

C. SIMULATION 

Simulations were conducted to determine numerical 

values of the False Non-match Rate (FNMR) and False Match  
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Rate (FMR) for various thresholds.  Equation 6.1 expresses 

the formula used for calculating the FNMR at different 

threshold values: 

 
Attempts Enrollee #

matches-Non False#
=FNMR . (6.1) 

The experiment matched the seven images of the same 

fingerprint to the corresponding template for the same 

fingerprint.  Therefore, each match that took place was 

considered to be an enrollee attempt to access the system.  

With seven impressions of sixty fingerprints, there were a 

total of 420 enrollee attempts. A False Non-match was 

recorded when the matching score between an enrollee and 

its template was less than the established threshold.  The 

procedure for calculating the FMR was slightly different.  

Equation 6.2 presents the formula used in calculating the 

FMR: 

 
AttemptsImposter  #

Matches False #
=FMR . (6.2) 

The imposter attempts were implemented by matching the 

seven images of one fingerprint with all the templates from 

the 59 other fingerprints.  This procedure simulated an 

imposter attempt as the input images did not have a 

corresponding template in the database.  Without a 

template, the imposter should not be allowed access.  This 

process was applied for the seven impressions from all 60 

different fingerprints.  In each case, the seven 

impressions were matched with the other 59 templates, 

resulting in 7 x 59 x 60 = 24780 imposter attempts.  A 

false match was recorded for each imposter attempt when the 

matching score was greater than the established threshold.  

The final FMR was computed by dividing the total number of 

False Matches by the total number of imposter attempts.  
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Figure 6.1 summarizes the matching process for computing 

the FNMR, while Figure 6.2 shows the process for the FMR. 

 

 
Figure 6.1. Matching process for computing the FNMR. 

 



77 

 
Figure 6.2. Matching process for computing the FMR. 

 

FNMR and FMR matching processes were performed for the 

two methods of thinning.  In each case, the matching scores 

were compared against various threshold values to obtain 

the performance data for each thinning method.  The 

threshold was adjusted from 0.05 to 0.95 in increments of 
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0.05.  Table 6.2 shows the results obtained for the central 

line thinning method. 

 

 
Table 6.2. Central line thinning FNMR/FMR data. 

 

Results show that the central line thinning scheme 

leads to very good recognition rates for threshold values 

below 0.65, and that the FNMR begins to increase to 

unacceptable values when the threshold is greater than 

0.65.  For example, at a threshold of 0.75, the FNMR is 

0.2542, meaning that an accepted enrollee will be denied 

access to the system 25.42% of the time.  Although the same 

user may be granted access on his next attempt, this 

threshold may create too much user inconvenience in most 

applications.  Meanwhile, the FMR only reaches unacceptable 

values at threshold levels below 0.15.  Thus, a system 

threshold of 0.55 would be adequate in most applications, 
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leading to FNMR and FMR below 1% and essentially 0%, 

respectively.  A more secure application may require 

increasing the threshold to around 0.65 to further reduce 

the possibility of a False Match occurring.  Next, Table 

6.3 provides the experimental results obtained with the 

block filter thinning technique. 

 

 
Table 6.3. Block filter thinning FNMR/FMR data. 

 

Results show the block filter thinning method develops 

problems in recognizing authorized enrollees.  Note that 

the FNMR does not reach 10% until the threshold has been 

reduced to 0.10.  At this threshold, the FMR has a value of 

1%.  Thus, there does not appear to be an acceptable 

threshold for a system that provides both user convenience 

and security from unauthorized personnel.  Upon further 

examination, the False Non-matches that occur for 
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thresholds below 0.55 were produced solely by the rotated 

input images.  For horizontal and vertical displacements, 

the system was still able to match authorized users.  

Therefore, another set of data was computed for thinning by 

block filter.  This time, the input images with a 

rotational transformation were not used.  Instead, only the 

base image (‘s00##_1.jpg’), the image shifted left 

(‘s00##_2.jpg’), the image shifted right (‘s00##_3.jpg’), 

the image shifted up (‘s00##_4.jpg’), and the image shifted 

down (‘s00##_5.jpg’) were used in the matching process.  

This procedure produced the data given in Table 6.4. 

 

 
Table 6.4. Block filter thinning FNMR/FMR data using no 

rotated input images. 
 

As Table 6.4 confirms, the block filter thinning 

technique produces good data when the input image is not 
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rotated.  When this is the case, a threshold around 0.55 

would be effective for most applications.  Even so, 

limiting input images to no rotation is difficult to employ 

in practice.  Therefore, the central line thinning process 

is more appealing for a practical application as it is 

rotational invariant. 

D. CONCLUSION 

Results show that using the central line thinning 

method leads to good recognition rates and allows the 

recognition system to handle rotated images without 

performance degradation.  The central line thinning 

method’s main strength lies in its ability to thin ridges 

in the same manner regardless of rotational orientation, 

making it easier to effectively process all types of input 

images.  Results also show that the block filter thinning 

works well for horizontal and vertical displacements, but 

degrades significantly when dealing with rotated images. As 

a result, the central line thinning method is the better 

choice for thinning the ridges to a one-pixel width. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

Many steps are required for a reliable fingerprint 

recognition system.  The first step involves pre-processing 

the original fingerprint image.  This includes image 

binarization, ridge thinning, and noise removal.  After 

this pre-processing phase is complete, the minutiae 

extraction step is executed, where the minutiae data is 

collected and organized into a single matrix.  From here, 

the matrix of input data is matched with the template data 

to determine if the input comes from the same finger as one 

of the templates.  Since all steps are necessary for an 

effective system, no one step is more important than 

another.  Instead, all steps should be viewed as critical 

steps for a reliable and effective system. 

B. RECOMMENDATIONS 

Possible recommendations for future work include 

developing code to handle fingerprints containing a large 

amount of noise.  This extension would be necessary to 

apply this system to commonly collected fingerprints, as 

most fingerprint images captured from a sensor contain some 

degree of sensor noise.  In such a case, an additional 

noise removal step needs to be applied before the image is 

sent to the binarization step.  This extension project 

would require focusing on transforming a noisy fingerprint 

image to a black and white image while preserving the 

overall ridge structure.  Providing this de-noising phase 

can be implemented successfully, the remaining steps of the 

fingerprint recognition system can then be applied as they 

were in this research study.  Furthermore, a more advanced 
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area of future work could involve incorporating this system 

with another biometric in developing a multimodal system. 
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APPENDIX A.  MATLAB CODE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• maincode.m 
 
%----------------------------------------------------------------------------------------------------- 
% When this code is executed, the data for FNMR and FMR is 
% generated for the two thinning methods 
% ----------------------------------------------------------------------------------------------------- 
% Output: Matrices of data containing matching scores 
% 
% Functions Used: get_minutiae_data.m, minutiae_match.m 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
clear 
falseNM_matchscores=zeros(60,7); 
falseNM_matchscores2=zeros(60,7); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute False NonMatches via central thinning 
 
tic 
for kt=0:59 
    kt 
     
    if kt < 10  %put zero in front of single character numbers 
        a1=['s000',num2str(kt),'_t.mat']; 
    else 
        a1=['s00',num2str(kt),'_t.mat']; 
    end 
     
    a1t=load(a1); 
    at=a1t.templatedata; 
         
    for ki=1:7 
         
        a2=[a1(1:6),num2str(ki),'.bmp'];   %a1(1:6)=s00##_  
        ai=get_minutiae_data(a2,1); 
         
        input_data=ai; 
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        template_data=at; 
         
        ismatch=minutiae_match(input_data,template_data); 
        falseNM_matchscores(kt+1,ki)=ismatch;   %kt+1 because kt starts counting at zero 
         
    end 
end 
toc     %Elapsed time is 2521.245433 seconds 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute False NonMatches via boundary block thinning 
 
tic 
for kt=0:59 
    kt 
     
    if kt < 10  %put zero in front of single character numbers 
        a1=['s000',num2str(kt),'_t2.mat']; 
    else 
        a1=['s00',num2str(kt),'_t2.mat']; 
    end 
     
    a1t=load(a1); 
    at=a1t.templatedata; 
         
    for ki=1:7 
         
        a2=[a1(1:6),num2str(ki),'.bmp'];   %a1(1:6)=s00##_  
        ai=get_minutiae_data(a2,2); 
         
        input_data=ai; 
        template_data=at; 
         
        ismatch=minutiae_match(input_data,template_data); 
        falseNM_matchscores2(kt+1,ki)=ismatch;   %kt+1 because kt starts counting at zero 
         
    end 
end 
toc      
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute False Matches via central thinning 
tic 
falseM_matchscores=zeros(60,59,7); 
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for ka=0:59 
    ka 
    if ka < 10  %put zero in front of single character numbers 
        a1=['s000',num2str(ka),'_']; 
    else 
        a1=['s00',num2str(ka),'_']; 
    end 
     
    for kb=1:7 
         
        a1i=[a1,num2str(kb),'.bmp']; 
        ai=get_minutiae_data(a1i,1); 
        input_data=ai; 
        comparecounter=0; 
                 
        for kc=0:59 %cycle through templates 
             
            if kc < 10  %put zero in front of single character numbers 
                a1t=['s000',num2str(kc),'_t.mat']; 
            else 
                a1t=['s00',num2str(kc),'_t.mat']; 
            end 
             
            if kc~=ka   %don't match input to its correct template 
                comparecounter=comparecounter+1; 
                a1td=load(a1t); 
                at=a1td.templatedata; 
                template_data=at; 
 
                ismatch=minutiae_match(input_data,template_data); 
                falseM_matchscores(ka+1,comparecounter,kb)=ismatch; 
            end 
        end 
         
    end 
end 
 
toc      
      
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute False Matches via boundary block thinning 
tic 
falseM_matchscores2=zeros(60,59,7); 
 
for ka=0:59 
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    ka 
    if ka < 10  %put zero in front of single character numbers 
        a1=['s000',num2str(ka),'_']; 
    else 
        a1=['s00',num2str(ka),'_']; 
    end 
     
    for kb=1:7 
         
        a1i=[a1,num2str(kb),'.bmp']; 
        ai=get_minutiae_data(a1i,2); 
        input_data=ai; 
        comparecounter=0; 
                 
        for kc=0:59 %cycle through templates 
             
            if kc < 10  %put zero in front of single character numbers 
                a1t=['s000',num2str(kc),'_t2.mat']; 
            else 
                a1t=['s00',num2str(kc),'_t2.mat']; 
            end 
             
            if kc~=ka   %don't match input to its correct template 
                comparecounter=comparecounter+1; 
                a1td=load(a1t); 
                at=a1td.templatedata; 
                template_data=at; 
 
                ismatch=minutiae_match(input_data,template_data); 
                falseM_matchscores2(ka+1,comparecounter,kb)=ismatch; 
            end 
        end 
         
    end 
end 
 
toc  
 
save('falseNMdata.mat','falseNM_matchscores') 
save('falseNMdata2.mat','falseNM_matchscores2') 
save('falseMdata.mat','falseM_matchscores') 
save('falseMdata2.mat','falseM_matchscores2') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• thin_blockfilter.m 
 
function bwthin=thin_blockfilter(xbw) 
 
%----------------------------------------------------------------------------------------------------- 
% This is the main code for thinning ridges via the block filter method 
% ----------------------------------------------------------------------------------------------------- 
% Input: Black and White input image in matrix format 
% 
% Output: Thinned image 
% 
% Functions Used: removeblock4.m, detect_term_bif.m, linetrace.m 
%    removehorizduplicate.m, removevertduplicate.m 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
 
%This function attempts to thin the black and white input image to a 
%1-pixel width 
 
[row,col]=size(xbw); 
 
%%%%%figure(1),imshow(xbw) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% erode original image 
 
g=[1,1;1,1]; 
z=imdilate(xbw,g); 
%%%%%figure(2),imshow(z) 
xbw=z; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%put border of white around image 
xbw(1:5,:)=1; 
xbw(row-4:row,:)=1; 
xbw(:,1:5)=1; 
xbw(:,col-4:col)=1; 
 
a=xbw;    
b=xbw; 
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% Left to Right 
for k=1:row 
    for m=1:col 
         
        if a(k,m)==0 %Black pixel 
                a(k+1:k+3,m+1:m+3)=1; 
        end 
            
    end 
end 
 
a=a(1:row,1:col); %Ensure a is the same size as original image 
 
%Right to Left 
for k=1:row 
    for m=col:-1:1 
         
        if b(k,m)==0 
             
            if m>4 
                b(k+1:k+3,m-3:m-1)=1; 
            end 
                 
        end 
         
    end 
end 
 
b=b(1:row,1:col); 
 
%%%%%figure(4),imshow(a) 
%%%%%figure(5),imshow(b) 
%%%%%figure(9),imshow((a+b)/2) 
 
d=((a+b)/2); 
d=im2bw(d,0.95); 
d=d-0; 
 
%remove isolated noise 
 
for k=1+3:row-3 
    for m=1+3:col-3 
         
       %if entire perimeter of 7x7 box is white, the contents within the box are unwanted       
       %noise 
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        if a(k,m)==0 
            if sum(a(k-3:k+3,m-3))==7 && sum(a(k-3:k+3,m+3))==7 && …   

sum(a(k-3,m-3:m+3))==7 && sum(a(k+3,m-3:m+3))==7 
 

                a(k-3:k+3,m-3:m+3)=1; 
            end 
        end 
         
        if b(k,m)==0 
            if sum(b(k-3:k+3,m-3))==7 && sum(b(k-3:k+3,m+3))==7 && …  

sum(b(k-3,m-3:m+3))==7 && sum(b(k+3,m-3:m+3))==7 
 

                b(k-3:k+3,m-3:m+3)=1; 
            end 
        end 
         
    end 
end 
 
%%%%%figure(6),imshow(a) 
%%%%%figure(7),imshow(b) 
 
c=(a+b)/2; 
c=im2bw(c,0.95); 
c=c-0; 
%%%%%figure(8),imshow(c) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% scan image for 2x2 blocks of black, then remove one pixel from block 
 
c2=removeblock4(d); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% detect end of lines and bifurcations using crossing number 
 
[lineends,bifur]=detect_term_bif(c2); 
 
%%%%%figure(10),imshow(lineends) 
%%%%%figure(13),imshow(bifur) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% remove unwanted short line segments 
 
f1=linetrace(c2,lineends,bifur,20); 
figure(14),imshow(f1) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Remove duplicate horizontal lines 
 
f2=removehorizduplicate(f1); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Remove duplicate vertical lines 
 
f2a=removevertduplicate(f2); 
%%%%%figure(15),imshow(f2a) 
 
[lineends2,bifur2]=detect_term_bif(f2a); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% remove unwanted line segments left from duplicate horizontal lines 
 
f3=linetrace(f2a,lineends2,bifur2,20); 
%%%%%figure(16),imshow(f3) 
 
bwthin=f3; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• removeblock4.m 
 
function y=removeblock4(x) 
 
%----------------------------------------------------------------------------------------------------- 
% This function deletes one pixel from a two-by-two square of black 
% pixels after initial block filter thinning process 
% ----------------------------------------------------------------------------------------------------- 
% Input: Initial thinned image, in matrix form 
% 
% Output: Thinned image, free of two-by-two squares of black pixels 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
[row,col]=size(x); 
 
for k=3:row-2 
    for m=3:col-2 
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        blocksum=x(k,m)+x(k,m+1)+x(k+1,m+1)+x(k+1,m); 
         
        %blocksum = 0 when there is a square of 4 black pixels 
         
        if blocksum == 0 
             
            % 1 2                
            % 4 3 
             
            %compute number of black pixels adjacent to outside of each 
            %pixel in block 
             
            touch1= 5 - sum(x(k-1:k+1,m-1))+sum(x(k-1,m:m+1)); 
            touch2= 5 - sum(x(k-1,m:m+2))+sum(x(k:k+1,m+2)); 
            touch3= 5 - sum(x(k:k+2,m+2))+sum(x(k+2,m:m+1)); 
            touch4= 5 - sum(x(k:k+2,m-1))+sum(x(k+2,m:m+1)); 
             
            touchvec=[touch1,touch2,touch3,touch4]; 
            touchvecmin=min(touchvec); 
            touchvecmin_index=find(touchvec == touchvecmin); 
             
            %Determine which pixel has the least amount of black pixels 
            %next to it, then erase it 
             
            erasepixel=touchvecmin_index(1); 
             
            if erasepixel == 1 
                x(k,m)=1; 
            elseif erasepixel == 2 
                x(k,m+1)=1; 
            elseif erasepixel == 3 
                x(k+1,m+1)=1; 
            elseif erasepixel == 4 
                x(k+1,m)=1; 
            end 
             
        end 
    end 
end 
 
y=x; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• detect_term_bif.m 
 
function [y_term,y_bif]=detect_term_bif(x) 
 
%----------------------------------------------------------------------------------------------------- 
% This function detects terminations and bifurcations in a thinned image 
% ----------------------------------------------------------------------------------------------------- 
% Input: Thinned image, in matrix form 
% 
% Output: y_term - matrix of data of same size as thinned image, with zeros 
%          at locations of terminations 
%       y_bif - matrix of data of same size as thinned image, with zeros 
%        at locations of bifurcations 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
[row,col]=size(x); 
 
y_term=ones(row,col); 
y_bif=ones(row,col); 
crossnum=zeros(row,col); 
 
for k=2:row-1 
    for m=2:col-1 
         
        if x(k,m)==0 
            crossnum(k,m)=(abs(x(k-1,m-1)-x(k-1,m))+abs(x(k-1,m)-x(k-1,m+1))... 
                +abs(x(k-1,m+1)-x(k,m+1))+abs(x(k,m+1)-x(k+1,m+1))... 
                +abs(x(k+1,m+1)-x(k+1,m))+abs(x(k+1,m)-x(k+1,m-1))... 
                +abs(x(k+1,m-1)-x(k,m-1))+abs(x(k,m-1)-x(k-1,m-1)))/2; 
             
            if crossnum(k,m)==1 
                y_term(k,m)=0; 
             
            elseif crossnum(k,m)>=3; 
                y_bif(k,m)=0; 
            end 
             
        end 
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    end 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• linetrace.m 
 
function y=linetrace(x,lineend,bif,tracedist) 
 
%----------------------------------------------------------------------------------------------------- 
% This function traces lines to remove short spurs and short island segments 
% ----------------------------------------------------------------------------------------------------- 
% Input: x - thinned image 
%    lineend - matrix of data of same size as thinned image, containing 
%        zeros at locations where traces will commence (usually 
%        terminations) 
%    bif - matrix of data of same size as thinned image, containing zeros 
%            at locations where traces will end (bifurcations when removing 
%            spurs, terminations when removing short islands) 
%    tracedist - maximum allowable trace length  
% 
% Output: Thinned image with unwanted segments removed 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
[row,col]=size(x); 
r=2; 
c=2; 
rnew=0; 
cnew=0; 
rold=0; 
cold=0; 
rtotal=[]; 
ctotal=[]; 
counter=0; 
checkbif=1; 
 
linelength=1; 
 
for k=1:row 
    for m=1:col 
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        if lineend(k,m)==0 
             
            linelength=1; 
            r=k; 
            c=m; 
            rtotal=[]; 
            ctotal=[]; 
            checkbif=1; 
            singlepoint=0; 
         
            while (linelength < tracedist) && (checkbif==1) && (r>1) && …  

(r<=row-1) && (c>1) && (c<=col-1) 
             
                x(r,c)=1; 
             
                if x(r-1,c)==0 
                    rnew=r-1; 
                    cnew=c; 
                elseif x(r,c+1)==0 
                    rnew=r; 
                    cnew=c+1; 
                elseif x(r+1,c)==0 
                    rnew=r+1; 
                    cnew=c; 
                elseif x(r,c-1)==0 
                    rnew=r; 
                    cnew=c-1; 
                elseif x(r-1,c-1)==0 
                    rnew=r-1; 
                    cnew=c-1; 
                elseif x(r-1,c+1)==0 
                    rnew=r-1; 
                    cnew=c+1; 
                elseif x(r+1,c+1)==0 
                    rnew=r+1; 
                    cnew=c+1; 
                elseif x(r+1,c-1)==0 
                    rnew=r+1; 
                    cnew=c-1; 
                else                %it is a single isolated pixel 
                    rnew=r; 
                    cnew=c; 
                    singlepoint=1; 
                end 
                 
                r=rnew; 
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                c=cnew; 
                linelength=linelength+1; 
                checkbif=bif(r,c); 
 
                rtotal=[rtotal;rnew]; 
                ctotal=[ctotal;cnew]; 
            end 
             
            if checkbif == 1    %Bifurcation not reached - replace points 
                for h=1:length(rtotal) 
                    x(rtotal(h),ctotal(h))=0; 
                    x(k,m)=0; 
                end 
            end 
             
            if singlepoint == 1     %delete isolated pixel 
                x(k,m)=1; 
            end 
        end 
    end 
end 
             
y=x; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• removehorizduplicate.m 
 
function y=removehorizduplicate(x) 
 
%----------------------------------------------------------------------------------------------------- 
% This function locates duplicate horizontal lines in thinned image and turns 
% the lower of the two lines from black to white 
% ----------------------------------------------------------------------------------------------------- 
% Input: Thinned image  
% 
% Output: Thinned image with duplicate horizontal lines removed 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
[row,col]=size(x); 
 
for k=5:row-5 
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    for m=1:col-5 
         
        scanright=0; 
        scanleft=0; 
        rightshift=1; 
        leftshift=1; 
         
        horizsum=sum(x(k,m:m+5));  
         
        if horizsum == 0      %straight line, check for lines beneath 
             
            horizsum1=sum(x(k+1,m:m+5)); 
            horizsum2=sum(x(k+2,m:m+5)); 
            horizsum3=sum(x(k+3,m:m+5)); 
            horizsum4=sum(x(k+4,m:m+5)); 
            horizsum5=sum(x(k+5,m:m+5)); 
             
            sumvector=[horizsum1,horizsum2,horizsum3,horizsum4,horizsum5]; 
             
            lineindex=find(sumvector == 0); 
             
            if length(lineindex) > 0     %i.e. not an empty vector 
                 
                x(k+lineindex(1),m)=1;   %turn to white 
                 
                while scanright == 0 
                    scanright=x(k+lineindex(1),m+rightshift); 
                     
                    if scanright == 0 
                        x(k+lineindex(1),m+rightshift)=1; 
                    end 
                     
                    rightshift=rightshift+1; 
                end 
                 
                 
                while scanleft == 0 
                    scanleft=x(k+lineindex(1),m-leftshift); 
                     
                    if scanleft == 0 
                        x(k+lineindex(1),m-leftshift)=1; 
                    end 
                     
                    leftshift=leftshift+1; 
                end 
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            end 
        end 
    end 
end 
 
y=x; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• removevertduplicate.m 
 
function y=removevertduplicate(x) 
 
%----------------------------------------------------------------------------------------------------- 
% This function locates duplicate vertical lines in thinned image and 
% deletes the unwanted segment 
% ----------------------------------------------------------------------------------------------------- 
% Input: Thinned image  
% 
% Output: Thinned image with duplicate vertical lines removed 
% 
% Functions Used: segmentlength.m, deletevertseg.m 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
[row,col]=size(x); 
 
[xlineend,xbif]=detect_term_bif(x); 
 
counter=0; 
 
for k=10:row-10 
    for m=10:col-10 
         
        scanup=0; 
        scandown=0; 
        upshift=1; 
        downshift=1; 
         
        vertsum=sum(x(k:k+10,m)); 
         
        if vertsum == 0     %vertical line, check for lines beside 
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            Rvertsum1=sum(x(k:k+10,m+1)); 
            Rvertsum2=sum(x(k:k+10,m+2)); 
            Rvertsum3=sum(x(k:k+10,m+3)); 
            Rsumvector=[Rvertsum1,Rvertsum2,Rvertsum3]; 
            Rlineindex=find(Rsumvector == 0); 
             
            if length(Rlineindex) > 0        %i.e. not an empty vector 
                 
                counter=counter+1; 
                 
                length1=segmentlength(x,k,m); 
                length2=segmentlength(x,k,m+Rlineindex(1)); 
                 
                if (length1 < length2)          %delete the smaller segment 
                    x=deletevertseg(x,k,m); 
                elseif (length2 < length1) 
                    x=deletevertseg(x,k,m+Rlineindex(1)); 
                end 
                 
                % when length1 == length2, segmentlength has reached the 
                % maximum allowable count, and neither is a spurious line 
                
            end 
        end 
         
    end 
end 
 
counter; 
y=x; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• deletevertseg.m 
 
function y2=deletevertseg(x,r1,c1) 
 
%----------------------------------------------------------------------------------------------------- 
% This function deletes unwanted duplicate vertical segments by tracing 
% it downward and deleting pixel by pixel until end of segment is reached 
% ----------------------------------------------------------------------------------------------------- 
% Input: x - thinned image 
%    r1 - row index of ridge at location where deletion begins 
%    c1 - column index of ridge at location where deletion begins  
% 
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% Output: Thinned image without duplicate vertical segment 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
%Used in conjunction with removevertduplicate 
 
keeptracing=1; 
rnew=0; 
cnew=0; 
 
x(r1,c1)=1;   %Turn white 
 
%move down to begin 
 
if x(r1+1,c1)==0 
    rnew=r1+1; 
    cnew=c1; 
    x(rnew,cnew)=1; 
elseif x(r1+1,c1-1)==0 
    rnew=r1+1; 
    cnew=c1-1; 
    x(rnew,cnew)=1; 
elseif x(r1+1,c1+1)==0 
    rnew=r1+1; 
    cnew=c1+1; 
    x(rnew,cnew)=1; 
else 
    keeptracing=0; 
end 
 
r=rnew; 
c=cnew; 
 
while keeptracing == 1 
     
    x(r,c)=1; 
     
    if x(r-1,c)==0 
        rnew=r-1; 
        cnew=c; 
    elseif x(r,c+1)==0 
        rnew=r; 
        cnew=c+1; 
    elseif x(r+1,c)==0 
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        rnew=r+1; 
        cnew=c; 
    elseif x(r,c-1)==0 
        rnew=r; 
        cnew=c-1; 
    elseif x(r-1,c-1)==0 
        rnew=r-1; 
        cnew=c-1; 
    elseif x(r-1,c+1)==0 
        rnew=r-1; 
        cnew=c+1; 
    elseif x(r+1,c+1)==0 
        rnew=r+1; 
        cnew=c+1; 
    elseif x(r+1,c-1)==0 
        rnew=r+1; 
        cnew=c-1; 
    else 
        keeptracing=0; 
    end 
 
    r=rnew; 
    c=cnew; 
     
end 
     
y2=x; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• segmentlength.m 
 
function total=segmentlength(x,startingrow,startingcol) 
 
%----------------------------------------------------------------------------------------------------- 
% This function traces a segment until it reaches an end or arrives 
% at the maximum trace distance, while maintaining a count of total 
% segment length 
% ----------------------------------------------------------------------------------------------------- 
% Input: x - thinned image 
%    startingrow - row index to start trace 
%    startingcol - column index to start trace  
% 
% Output: Number indicating total trace length 
% 
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% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
%Used in conjunction with removevertduplicate, and begins by searching 
%downward 
 
total=1; 
keeptracing=1; 
rnew=0; 
cnew=0; 
 
x(startingrow,startingcol)=1;   %Turn white 
 
%search down to begin 
 
if x(startingrow+1,startingcol)==0 
    rnew=startingrow+1; 
    cnew=startingcol; 
    x(rnew,cnew)=1; 
elseif x(startingrow+1,startingcol-1)==0 
    rnew=startingrow+1; 
    cnew=startingcol-1; 
    x(rnew,cnew)=1; 
elseif x(startingrow+1,startingcol+1)==0 
    rnew=startingrow+1; 
    cnew=startingcol+1; 
    x(rnew,cnew)=1; 
else 
    keeptracing=0; 
end 
 
r=rnew; 
c=cnew; 
 
while (keeptracing == 1) && (total < 40)  
     
    x(r,c)=1; 
     
    if x(r-1,c)==0 
        rnew=r-1; 
        cnew=c; 
    elseif x(r,c+1)==0 
        rnew=r; 
        cnew=c+1; 
    elseif x(r+1,c)==0 
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        rnew=r+1; 
        cnew=c; 
    elseif x(r,c-1)==0 
        rnew=r; 
        cnew=c-1; 
    elseif x(r-1,c-1)==0 
        rnew=r-1; 
        cnew=c-1; 
    elseif x(r-1,c+1)==0 
        rnew=r-1; 
        cnew=c+1; 
    elseif x(r+1,c+1)==0 
        rnew=r+1; 
        cnew=c+1; 
    elseif x(r+1,c-1)==0 
        rnew=r+1; 
        cnew=c-1; 
    else 
        keeptracing=0; 
    end 
 
    r=rnew; 
    c=cnew; 
    total=total+1; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• thinbwimage.m 
 
function y=thinbwimage(xin) 
 
%----------------------------------------------------------------------------------------------------- 
% This function is the main code for thinning via the central line 
% method 
% ----------------------------------------------------------------------------------------------------- 
% Input: Black and White image in matrix form  
% 
% Output: Thinned image 
% 
% Author: Graig Diefenderfer (Developed from process described in 
%         [Ahmed & Ward, 2002]) 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
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%%%% Black pixel = 0 
%%%% White pixel = 1 
 
x=xin; 
y=xin; 
[row,col]=size(x); 
stopscanmatrix=zeros(row,col);  %used in debugging 
difference=1; 
 
while(difference ~= 0) 
 
    for k=3:row-3 
        for m=3:col-3 
 
            twover=0; 
            twohor=0; 
            stopscan=0; 
 
            if x(k,m)==0 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Check to see if the pixel belongs to two pixels width in vertical then 
% horizontal direction 
 
                if ( x(k-1,m)==1 && x(k+1,m)==0 && x(k+2,m)==1 ) || … 

( x(k-2,m)==1 && x(k-1,m)==0 && x(k+1,m)==1 ) 
 
                    twover = 1; 
                end 
 
                if ( x(k,m-1)==1 && x(k,m+1)==0 && x(k,m+2)==1 ) || … 

( x(k,m-2)==1 && x(k,m-1)==0 && x(k,m+1)==1 ) 
 
                    twohor = 1; 
                end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Begin analysis for two pixel width in vertical direction 
 
                if twover==1 
 

if ( x(k,m-1)==0 && x(k+1,m-1)==0 && x(k+1,m)==0 && …      
  x(k+1,m+1)==0 && x(k,m+1)==0 && x(k-1,m)==1 && x(k+2,m)==1 ) 

 
                        stopscan = 1; 
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                    elseif (x(k,m-1)==0 && x(k-1,m-1)==0 && x(k-1,m)==0 && …  
                        x(k-1,m+1)==0 && x(k,m+1)==0 && x(k-2,m)==1 && x(k+1,m)==1 ) 
 
                        y(k,m) = 1;     %delete pixel 
                        stopscan = 1; 
 
                    end 
 
                    if stopscan==0 
 
                        if( x(k+1,m)==0 && x(k+1,m-1)==0 && x(k+2,m-1)==0 && …  

     x(k,m-1)==1 && x(k-1,m-1)==1 && x(k-1,m)==1 && …  
     x(k-1,m+1)==1 && x(k,m+1)==1 && x(k+1,m+1)==1 && ...        
     x(k+2,m+1)==1 && x(k+2,m)==1 ) 

                            stopscan = 1; 
 
                        elseif (x(k+1,m)==0 && x(k+1,m+1)==0 && x(k+2,m+1)==0 && …    
                                   x(k+2,m)==1 && x(k+2,m-1)==1 && x(k+1,m-1)==1 && …              
                                   x(k,m-1)==1 && x(k-1,m-1)==1 && x(k-1,m)==1 && …  
                                   x(k-1,m+1)==1 && x(k,m+1)==1 ) 
                            stopscan = 1; 
 
                        elseif ( x(k-1,m)==0 && x(k-1,m-1)==0 && x(k-2,m-1)==0 && …  
                                    x(k-2,m)==1 && x(k-2,m+1)==1 && x(k-1,m+1)==1 && …  
                                    x(k,m+1)==1 && x(k+1,m+1)==1 && x(k+1,m)==1 && …  
                                    x(k+1,m-1)==1 && x(k,m-1)==1 ) 
                            stopscan = 1; 
 
                        elseif ( x(k-1,m)==0 && x(k-1,m+1)==0 && x(k-2,m+1)==0 && …  
                                    x(k-2,m)==1 && x(k-2,m-1)==1 && x(k-1,m-1)==1 && …  
                                    x(k,m-1)==1 && x(k+1,m-1)==1 && x(k+1,m)==1 && …  
                                    x(k+1,m+1)==1 && x(k,m+1)==1 ) 
                            stopscan = 1; 
 
                        end 
 
                    end 
 
                end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin analysis for two pixel width in horizontal direction 
 
                if twohor==1 
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                    if( x(k-1,m)==0 && x(k-1,m+1)==0 && x(k,m+1)==0 && …   
                        x(k+1,m+1)==0 && x(k+1,m)==0 && x(k,m-1)==1 && x(k,m+2)==1 ) 
 
                        stopscan = 1; 
 
                    elseif ( x(k-1,m)==0 && x(k-1,m-1)==0 && x(k,m-1)==0 && …  
                         x(k+1,m-1)==0 && x(k+1,m)==0 && x(k,m-2)==1 && x(k,m+1)==1 ) 
 
                        y(k,m) = 1;     %delete pixel 
                        stopscan = 1; 
 
                    end 
 
                    if stopscan==0 
 
                        if( x(k,m+1)==0 && x(k+1,m+1)==0 && x(k+1,m+2)==0 && …  
                             x(k,m+2)==1 && x(k-1,m+2)==1 && x(k-1,m+1)==1 && …  
                             x(k-1,m)==1 && x(k-1,m-1)==1 && x(k,m-1)==1 && …  
                             x(k+1,m-1)==1 && x(k+1,m)==1 ) 
                            stopscan = 1; 
 
                        elseif ( x(k,m+1)==0 && x(k-1,m+1)==0 && x(k-1,m+2)==0 && …  
                                    x(k,m+2)==1 && x(k+1,m+2)==1 && x(k+1,m+1)==1 && …  
                                    x(k+1,m)==1 && x(k+1,m-1)==1 && x(k,m-1)==1 && …  
                                    x(k-1,m-1)==1 && x(k-1,m)==1 ) 
                            stopscan = 1; 
 
                        elseif ( x(k,m-1)==0 && x(k+1,m-1)==0 && x(k+1,m-2)==0 && …  
                                   x(k,m-2)==1 && x(k-1,m-2)==1 && x(k-1,m-1)==1 && …  
                                   x(k-1,m)==1 && x(k-1,m+1)==1 && x(k,m+1)==1 && …  
                                   x(k+1,m+1)==1 && x(k+1,m)==1 ) 
                            stopscan = 1; 
 
                        elseif ( x(k,m-1)==0 && x(k-1,m-1)==0 && x(k-1,m-2)==0 && …  
                                    x(k,m-2)==1 && x(k+1,m-2)==1 && x(k+1,m-1)==1 && … 
                                    x(k+1,m)==1 && x(k+1,m+1)==1 && x(k,m+1)==1 && …  
                                    x(k-1,m+1)==1 && x(k-1,m)==1 ) 
                            stopscan = 1; 
 
                        end 
 
                    end 
 
                end 
 
                stopscanmatrix(k,m)=stopscan; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Apply 21 rules to pixel 
 
                if stopscan==0 
 
                    %obtain the value for each surrounding pixel 
                    % 
                    %     b1  b2  b3 
                    %     b8  x   b4 
                    %     b7  b6  b5 
                    % 
 
                    b1=x(k-1,m-1); 
                    b2=x(k-1,m); 
                    b3=x(k-1,m+1); 
                    b4=x(k,m+1); 
                    b5=x(k+1,m+1); 
                    b6=x(k+1,m); 
                    b7=x(k+1,m-1); 
                    b8=x(k,m-1); 
 
%1 
                    if( b1==0 && b6==0 && b7==0 && b8==0 && b3==1 && b4==1 )         
                        y(k,m)=1; 
 
%2 
                    elseif( b1==0 && b2==0 && b7==0 && b8==0 && b4==1 && b5==1 )     
                        y(k,m)=1; 
 
%3 
                    elseif( b1==0 && b2==0 && b3==0 && b4==0 && b6==1 && b7==1 )     
                        y(k,m)=1; 
 
%4 
                    elseif( b1==0 && b2==0 && b3==0 && b8==0 && b5==1 && b6==1 )     
                        y(k,m)=1; 
 
%5 
                    elseif( b1==0 && b8==0 && b3==1 && b4==1 && b5==1 && b6==1 )     
                        y(k,m)=1; 
 
%6 
                    elseif( b1==0 && b2==0 && b4==1 && b5==1 && b6==1 && b7==1 )     
                        y(k,m)=1; 
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%7 
                    elseif( b1==0 && b2==0 && b3==0 && b5==0 && b6==0 && … 
                               b7==0 && b8==0 && b4==1 )   
                        y(k,m)=1; 
 
%8 
                    elseif( b1==0 && b2==0 && b3==0 && b4==0 && b5==0 && …  
                               b7==0 && b8==0 && b6==1 )  
                        y(k,m)=1; 
 
%9 
                    elseif( b7==0 && b8==0 && b2==1 && b3==1 && b4==1 && b5==1 )     
                        y(k,m)=1; 
 
%10 
                    elseif( b6==0 && b7==0 && b1==1 && b2==1 && b3==1 && b4==1 )     
                        y(k,m)=1; 
 
%11 
                    elseif( b2==0 && b3==0 && b5==1 && b6==1 && b7==1 && b8==1 )     
                        y(k,m)=1; 
 
%12 
                    elseif( b3==0 && b4==0 && b1==1 && b6==1 && b7==1 && b8==1 )     
                        y(k,m)=1; 
 
%13 
                    elseif( b5==0 && b6==0 && b1==1 && b2==1 && b3==1 && b8==1 )     
                        y(k,m)=1; 
 
%14 
                    elseif( b4==0 && b5==0 && b1==1 && b2==1 && b7==1 && b8==1 )     
                        y(k,m)=1; 
 
%15 
                    elseif( b1==0 && b2==0 && b3==0 && b4==0 && b5==0 && …  
                               b6==0 && b7==0 && b8==1 )   
                        y(k,m)=1; 
 
%16 
                    elseif( b1==0 && b3==0 && b4==0 && b5==0 && b6==0 && …  
                               b7==0 && b8==0 && b2==1 )  
                        y(k,m)=1; 
 
%17 
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                    elseif( b3==0 && b4==0 && b5==0 && b6==0 && b1==1 && b8==1 )     
                        y(k,m)=1; 
 
%18 
                    elseif( b2==0 && b3==0 && b4==0 && b5==0 && b7==1 && b8==1 )     
                        y(k,m)=1; 
 
%19 
                    elseif( b4==0 && b5==0 && b6==0 && b7==0 && b1==1 && b2==1 )     
                        y(k,m)=1; 
 
%20 
                    elseif( b5==0 && b6==0 && b7==0 && b8==0 && b2==1 && b3==1 )   
                        y(k,m)=1; 
 
%21 
                    elseif( b1==1 && b2==1 && b3==1 && b4==1 && b5==1 && …  
                               b6==1 && b7==1 && b8==1 ) 
                        y(k,m)=1; 
 
                    end 
 
                end 
 
            end         %closes initial 'if x(k,m)==0' loop 
 
        end 
    end 
 
    difference=sum(sum(y-x));   %compare the difference between images  
                                %If difference == 0, then no change has 
                                %taken place and thinning is complete. 
                                %The code will then exit the while loop 
    x=y; 
     
end         %closes while loop                     
                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Apply diagonal rules to thinned image 
 
for k=3:row-3 
    for m=3:col-3 
         
        if y(k,m)==0 
             
            %obtain the value for each surrounding pixel 
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            % 
            %     p1  p2  p3 
            %     p8  x   p4 
            %     p7  p6  p5 
            % 
 
            p1=y(k-1,m-1); 
            p2=y(k-1,m); 
            p3=y(k-1,m+1); 
            p4=y(k,m+1); 
            p5=y(k+1,m+1); 
            p6=y(k+1,m); 
            p7=y(k+1,m-1); 
            p8=y(k,m-1); 
 
 
            if ( p2==0 && p8==0 && p4==1 && p5==1 && p6==1 )    %D1 
                y(k,m)=1; 
            elseif( p4==0 && p6==0 && p1==1 && p2==1 && p8==1 ) %D2 
                y(k,m)=1; 
            elseif( p2==0 && p4==0 && p6==1 && p7==1 && p8==1 ) %D3 
                y(k,m)=1; 
            elseif( p6==0 && p8==0 && p2==1 && p3==1 && p4==1 ) %D4 
                y(k,m)=1; 
            end 
             
        end 
         
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• get_minutiae_data.m 
 
function min_data2=get_minutiae_data(fingfile,thinningmethod) 
 
%----------------------------------------------------------------------------------------------------- 
% This function will take an input fingerprint file and locate the 
% terminations and bifurcations.  It will also plot the locations of  
% these minutiae superimposed on the original black and white image. 
% ----------------------------------------------------------------------------------------------------- 
% Input: fingfile - filename of input fingerprint image, in string format 
%     thinningmethod - thinning method to be used 
%           (1=central line, 2=block filter)  
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% 
% Output: Minutiae data in matrix format 
%           column 1: row indices 
%            column 2: column indices 
%            column 3: angle orientation 
%            column 4: type of minutiae  (1=termination, 2=bifurcation) 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
orig=imread(fingfile); 
bw=im2bw(orig(:,:,1),185/255); 
bw1=bw-0;               %make it a double 
bw1(1:18,:)=1;          %erase title 
[rows,cols]=size(orig(:,:,1)); 
 
%figure(6),imshow(orig) 
 
%Thin the fingerprint image 
if thinningmethod==1 
    z1=thinbwimage(bw1); 
elseif thinningmethod==2 
    z1=thin_blockfilter(bw1); 
end 
%figure(17),imshow(z1) 
 
[term,bifur]=detect_term_bif(z1); 
z1=linetrace(z1,term,term,17);  %remove short island segments 
z1=linetrace(z1,term,bifur,8); %remove spurs 
%figure(18),imshow(z1) 
 
[term,bifur]=detect_term_bif(z1); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% isolate good portion of fingerprint via an ellipse 
 
ellips=ones(rows,cols); 
[blrow,blcol]=find(z1==0);  %locate all black pixels 
rowrange=max(blrow)-min(blrow); 
colrange=max(blcol)-min(blcol); 
rowcenter=min(blrow)+ (rowrange/2); 
colcenter=min(blcol)+ (colrange/2); 
ellipse_a=0.47*rowrange; 
ellipse_b=0.43*colrange; 
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for k=1:rows 
    for m=1:cols 
         
        ellipsecalc=((k-rowcenter)^2)/(ellipse_a^2)+((m-colcenter)^2)/(ellipse_b^2); 
         
        if ellipsecalc < 1      %within ellipse, turn to black 
            ellips(k,m)=0;   
        end 
    end 
end 
 
%figure(19),imshow((ellips+z1)/2) 
 
x_term1=((ellips+term)/2); 
x_term=im2bw(x_term1,0.1); 
x_term=x_term-0;    %make it a double 
 
x_bifur1=((ellips+bifur)/2); 
x_bifur=im2bw(x_bifur1,0.1); 
x_bifur=x_bifur-0;  %make it a double 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% get indices for terminations and bifurcations 
 
[term_row,term_col]=find(x_term==0); 
termpoints=length(term_row); 
[bifur_row,bifur_col]=find(x_bifur==0); 
bifurpoints=length(bifur_row); 
 
term_angle = determine_term_angles(z1,term_row,term_col); 
 
term_data=zeros(termpoints,3); 
term_data(:,1)=term_row; 
term_data(:,2)=term_col; 
term_data(:,3)=term_angle; 
 
%The terminations of the inverted image correspond to the bifurcations in 
%the original image 
 
bwinvert=abs(1-bw);          %Invert original image 
%Thin the inverted fingerprint image 
if thinningmethod==1 
    thininvert=thinbwimage(bwinvert); 
elseif thinningmethod==2 
    thininvert=thin_blockfilter(bwinvert); 
end 
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[term_inv,bifur_inv]=detect_term_bif(thininvert); 
term_inv=((term_inv+ellips)/2);  %isolate good region of fingerprint 
term_inv=im2bw(term_inv,0.1); 
term_inv=term_inv-0;     %make it a double 
[term_inv_row,term_inv_col]=find(term_inv==0); 
 
bifur_data=determine_bif_angles(thininvert, bifur_row, bifur_col, term_inv_row, 
term_inv_col); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% combine terminations and bifurcations into one matrix of data 
% column 1: row indices 
% column 2: column indices 
% column 3: angle orientation 
% column 4: type of minutiae  (1=termination, 2=bifurcation) 
 
min_data=zeros(termpoints+bifurpoints,4); 
min_data(1:termpoints,4)=1; %a 1 in the fourth column indicates termination 
min_data(1:termpoints,1:3)=term_data; 
min_data(termpoints+1:termpoints+bifurpoints,4)=2; %a 2 indicates bifurcation 
min_data(termpoints+1:termpoints+bifurpoints,1:3)=bifur_data; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% remove terminations at edges of image 
 
min_data2=remove_edge_term(min_data,z1); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% plot minutiae, with line indicating angle orientation 
 
min_display=plot_minutiae(min_data2,rows,cols); 
figure(20),imshow(min_display) 
figure(21),imshow((min_display/1.5)+(bw1/5)) 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• determine_term_angles.m 
 
function y_angle = determine_term_angles(x,rowindex,colindex) 
 
%----------------------------------------------------------------------------------------------------- 
% This function computes the angles of terminations in a thinned image 
% ----------------------------------------------------------------------------------------------------- 
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% Input: x - thinned fingerprint image 
%  rowindex - row indices of terminations 
%  colindex - column indices of terminations  
% 
% Output: Corresponding orientation angles of each termination 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
[row,col]=size(x); 
numpoints=length(rowindex); 
y_angle=zeros(numpoints,1); 
 
maxtrace=5; 
totaltrace=0; 
r=0; 
c=0; 
rnew=0; 
cnew=0; 
 
for k=1:numpoints 
     
    r=rowindex(k); 
    c=colindex(k); 
    totaltrace=0; 
     
    while(totaltrace < maxtrace) 
         
        x(r,c)=1; 
 
        if x(r-1,c)==0 
            rnew=r-1; 
            cnew=c; 
        elseif x(r,c+1)==0 
            rnew=r; 
            cnew=c+1; 
        elseif x(r+1,c)==0 
            rnew=r+1; 
            cnew=c; 
        elseif x(r,c-1)==0 
            rnew=r; 
            cnew=c-1; 
        elseif x(r-1,c-1)==0 
            rnew=r-1; 
            cnew=c-1; 
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        elseif x(r-1,c+1)==0 
            rnew=r-1; 
            cnew=c+1; 
        elseif x(r+1,c+1)==0 
            rnew=r+1; 
            cnew=c+1; 
        elseif x(r+1,c-1)==0 
            rnew=r+1; 
            cnew=c-1; 
        end 
 
        r=rnew; 
        c=cnew; 
        totaltrace=totaltrace+1; 
         
    end   %at the end of the while loop, r and c represent the indices 
          %that will be used to calculate the angle of the termination 
 
    r1=rowindex(k); 
    c1=colindex(k); 
    r2=r; 
    c2=c; 
     
    if(c1==c2 && r1>r2) 
        y_angle(k)=270; 
         
    elseif(c1==c2 && r2>r1) 
        y_angle(k)=90; 
         
    elseif(r1==r2 && c1>c2) 
        y_angle(k)=0; 
         
    elseif(r1==r2 && c2>c1) 
        y_angle(k)=180; 
         
    elseif(r1>r2 && c1>c2) 
        y_angle(k)=360-(atan((r1-r2)/(c1-c2))*180/pi); 
         
    elseif(c1>c2 && r2>r1) 
        y_angle(k)=90-(atan((c1-c2)/(r2-r1))*180/pi); 
         
    elseif(r1>r2 && c2>c1) 
        y_angle(k)=180+(atan((r1-r2)/(c2-c1))*180/pi); 
         
    elseif(c2>c1 && r2>r1) 
        y_angle(k)=90+(atan((c2-c1)/(r2-r1))*180/pi); 
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    end 
     
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• determine_bif_angles.m 
 
function y=determine_bif_angles(xinv,biforow,bifocol,termirow,termicol) 
 
%----------------------------------------------------------------------------------------------------- 
% This function computes the angles of bifurcations in a thinned image 
% ----------------------------------------------------------------------------------------------------- 
% Input: xinv - thinned inverted fingerprint image 
%    biforow - bifurcations from original image, row indices 
%    bifocol - bifurcations from original image, column indices 
%    termirow - terminations from inverted image, row indices 
%    termicol - terminations from inverted image, column indices  
% 
% Output: Matrix of data 
%         column1 - bifurcation row indices 
%         column2 - bifurcation column indices 
%         column3 - bifur angles assigned to row/col coordinates 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
invtermangles=determine_term_angles(xinv,termirow,termicol); 
invtermpoints=length(termirow); 
invtermdata=zeros(invtermpoints,3); 
invtermdata(:,1)=termirow; 
invtermdata(:,2)=termicol; 
invtermdata(:,3)=invtermangles; 
 
bifpoints=length(biforow); 
bifdata=zeros(bifpoints,3); 
bifdata(:,1)=biforow; 
bifdata(:,2)=bifocol; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Compare position locations between terminations of inverted image to 
%bifurcations of original image.  If a termination of the inverted image 
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%lies close to a bifurcation in the original image, assign the angle of 
%the termination as the angle of the bifurcation.  If a bifurcation does 
%not match any terminations, keep its angle at zero. 
 
for k=1:bifpoints 
     
    lowestdistance=100; %reset lowestdistance variable 
     
    for m=1:invtermpoints 
         
        rowdif=abs(bifdata(k,1)-invtermdata(m,1)); 
        coldif=abs(bifdata(k,2)-invtermdata(m,2)); 
        absolutedistance = sqrt(rowdif^2+coldif^2); 
         
        if (absolutedistance <= 15) && (absolutedistance < lowestdistance) 
             
            bifdata(k,3)=invtermdata(m,3);  %assign angle value             
             
            lowestdistance=absolutedistance;    %change lowestdistance 
        end 
         
    end 
end 
 
y=bifdata; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• plot_minutiae.m 
 
function y=plot_minutiae(mdata,row,col) 
 
%----------------------------------------------------------------------------------------------------- 
% This function generates a matrix that highlights the minutiae along  
% with their orientation angle.  Squares represent terminations and  
% diamonds represent bifurcations. 
% ----------------------------------------------------------------------------------------------------- 
% Input: mdata - matrix of input minutiae data 
%   column 1: row indices 
%   column 2: column indices 
%   column 3: angle orientation 
%   column 4: type of minutiae  (1=termination, 2=bifurcation) 
%     row - number of rows in original image 
%     col - number of columns in original image 
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% 
% Output: Matrix of data ready to be plotted 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
[nrows,ncols]=size(mdata); 
 
stdline=zeros(15,15); 
stdline(8,8:15)=1; 
 
% draw square at terminations and diamond at bifurcations 
 
squ=ones(5,5); 
squ(1,1:5)=0; 
squ(2:4,5)=0; 
squ(5,1:5)=0; 
squ(2:4,1)=0; 
 
diamond=ones(5,5); 
diamond(1,3)=0; 
diamond(2,2)=0; 
diamond(3,1)=0; 
diamond(4,2)=0; 
diamond(5,3)=0; 
diamond(4,4)=0; 
diamond(3,5)=0; 
diamond(2,4)=0; 
 
y1=ones(row,col); 
y2=zeros(row,col); 
 
for k=1:nrows   %nrows is equal to the total number of minutiae 
    rindex=mdata(k,1); 
    cindex=mdata(k,2); 
    newline=zeros(row,col);  %matrix of entire figure, will have ones only where new line  

%will be added 
     
    %draw squares and diamonds 
    if mdata(k,4)==1    %termination 
        y1(rindex-2:rindex+2,cindex-2:cindex+2)=squ; 
         
    elseif mdata(k,4)==2    %bifurcation 
        y1(rindex-2:rindex+2,cindex-2:cindex+2)=diamond; 
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    end 
     
    drawline=stdline; 
    drawline=imrotate(stdline,mdata(k,3));  %has ones where line is 
     
    [rline,cline]=size(drawline); 
    midrow=ceil(rline/2); 
    midcol=ceil(cline/2); 
     
    newline(rindex-midrow+1:rindex+(rline-midrow),cindex-midcol+1:cindex+ … 

      (cline-midcol))=drawline; 
 
    y2=y2+newline; 
        
end 
 
%y2 has positive integer values at locations where a line should be drawn 
y2=im2bw(y2,0.1); 
y2=abs(1-y2);    %invert image, to have lines be drawn black 
 
y=(y1+y2)/2; 
y=im2bw(y,0.9); 
y=y-0;  %make it a double 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• minutiae_match.m 
 
function ym=minutiae_match(idata,tdata) 
 
%----------------------------------------------------------------------------------------------------- 
% This function takes two matrices of data, and computes the overall matching score 
% between the two sets. 
% ----------------------------------------------------------------------------------------------------- 
% Input: idata - Input fingerprint data 
%    tdata - Template fingerprint data 
% 
%   column 1: row indices 
%   column 2: column indices 
%   column 3: angle orientation 
%   column 4: type of minutiae  (1=termination, 2=bifurcation) 
% 
% Output: Matching score between the two matrices of minutiae data 
% 
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% Functions Used: match_score.m 
% 
% Author: Graig Diefenderfer (Developed from process described in 
%          [Luo, Tian, & Wu, 2000]) 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
[idatarow,idatacol]=size(idata); 
[tdatarow,tdatacol]=size(tdata); 
matchingscore=zeros(tdatarow,idatarow); 
 
%number of minutiae points for input and template is equal to the number of 
%rows in idata and tdata, respectively 
 
%create a matrix containing all the possible rotation values 
rotatevalues=zeros(tdatarow,idatarow); 
for k=1:tdatarow 
    for m=1:idatarow 
        rotatevalues(k,m)=tdata(k,3)-idata(m,3); 
    end 
end 
 
%convert each minutiae point to polar coordinates with respect to the 
%reference minutiae in each case 
for k=1:tdatarow 
    for m=1:idatarow 
         
        tdatapolar=zeros(tdatarow,tdatacol); 
        idatapolar=zeros(idatarow,idatacol); 
         
        tref=tdata(k,:); 
        iref=idata(m,:); 
         
        tdatapolar(:,1)=sqrt((tdata(:,1)-tref(1)).^2 + (tdata(:,2)-tref(2)).^2); 
        tdatapolar(:,2)=atan2(tref(1)-tdata(:,1),tdata(:,2)-tref(2)) * 180/pi; 
        %rows give y displacement, cols give x diplacement 
        tdatapolar(:,2)=mod(tdatapolar(:,2),360);   %get angles between 0 and 360 
        tdatapolar(:,3)=tdata(:,3)-tref(3); 
        tdatapolar(:,3)=mod(tdatapolar(:,3),360);    %get angles between 0 and 360 
        tdatapolar(:,4)=tdata(:,4); 
                
        idatapolar(:,1)=sqrt((idata(:,1)-iref(1)).^2 + (idata(:,2)-iref(2)).^2); 
        idatapolar(:,2)=(atan2(iref(1)-idata(:,1),idata(:,2)-iref(2)) * 180/pi) + …  

rotatevalues(k,m); 
        idatapolar(:,2)=mod(idatapolar(:,2),360);   %get angles between 0 and 360 
        idatapolar(:,3)=idata(:,3)-iref(3); 
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        idatapolar(:,3)=mod(idatapolar(:,3),360);   %get angles between 0 and 360 
        idatapolar(:,4)=idata(:,4); 
         
        matchingscore(k,m)=compute_match_score(tdatapolar,idatapolar); 
         
    end 
end 
 
maxmatchingscore=max(max(matchingscore)); 
maxminutiae=max(idatarow,tdatarow);     %get maximum minutiae values between input 
and template 
 
ym=maxmatchingscore/maxminutiae; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• compute_match_score.m 
 
function mscore=compute_match_score(tpol,ipol) 
 
%----------------------------------------------------------------------------------------------------- 
% This function is called from the minutiae_matching function.  It 
% compares the data and computes their matching score. 
% ----------------------------------------------------------------------------------------------------- 
% Input: tpol - template data points, in polar coordinates 
%  ipol - input data points, in polar coordinates 
%   column 1: radial distance 
%   column 2: radial angle 
%   column 3: minutiae orientation 
%   column 4: type of minutiae  (1=termination, 2=bifurcation) 
% 
% Output: Matching score for one combination of reference points 
% 
% Author: Graig Diefenderfer (Developed from process described in 
%          [Luo, Tian, & Wu, 2000]) 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
tpoints=size(tpol,1);   %number of rows=number of template points 
ipoints=size(ipol,1);   %number of rows=number of input points 
 
%use fixed size bounding box for all template points 
radsize=zeros(tpoints,1); 
angsize=zeros(tpoints,1); 
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radsize(:)=6; 
angsize(:)=10; 
 
radlow=-radsize./2; 
radhigh=radsize./2; 
 
anglow=-angsize./2; 
anghigh=angsize./2; 
 
epsillon=10; 
mscore=0; 
 
for kk=1:tpoints 
    for mm=1:ipoints 
 
        rdiff=tpol(kk,1)-ipol(mm,1); 
        ediff=tpol(kk,2)-ipol(mm,2); 
        thetadiff=tpol(kk,3)-ipol(mm,3); 
 
        if ((radlow(kk) < rdiff) && (rdiff < radhigh(kk)) && (anglow(kk) < ediff) && …  

(ediff < anghigh(kk)) && (abs(thetadiff) < epsillon) && …  
(tpol(kk,4)==ipol(mm,4))) 
 

            mscore=mscore+1; 
            tpol(kk,4)=3;   %Change type of minutiae, indicating it has been used in a match  

%already 
        end 
         
    end 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• remove_edge_term.m 
 
function ym=remove_edge_term(mdata,xthin) 
 
%----------------------------------------------------------------------------------------------------- 
% This function removes terminations that lie near the edges of the 
% fingerprint image.  These terminations are not true minutiae, but they  
% appear as terminations because the ridges are cutoff along the edges of 
% the image. 
% ----------------------------------------------------------------------------------------------------- 
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% Input: mdata - matrix of input minutiae data 
%       column 1: row indices 
%       column 2: column indices 
%       column 3: angle orientation 
%       column 4: type of minutiae  (1=termination, 2=bifurcation) 
%  xthin - thinned fingerprint image 
% 
% Output: Matrix of minutiae data with incorrect terminations along the 
%   edges removed 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
ym=mdata; 
[mrows,mcols]=size(mdata); 
searchlength=20; 
remterm=0; 
 
rowcount=1;     %represents minutiae data number 
checktype=mdata(rowcount,4); 
 
[thinrow,thincol]=size(xthin); 
 
while checktype==1 && rowcount<=mrows  %only use terminations 
    
   mangle=(mdata(rowcount,3)); 
   rstart=mdata(rowcount,1); 
   cstart=mdata(rowcount,2); 
    
   if ((mangle >= 45) && (mangle < 135)) || ((mangle >= 225) && (mangle <315)) 
       %search left and right, ensuring that the search window stays within 
       %the dimensions of the thinned image, and the search length doesn't 
       %exceed the value of searchlength defined previously 
       sleft=min((cstart-1),searchlength); 
       sright=min((thincol-cstart),searchlength); 
       leftpoints=xthin(rstart,cstart-sleft:cstart-1); 
       rightpoints=xthin(rstart,cstart+1:cstart+sright); 
        
       flipleft=1-leftpoints;   %now, white pixels = 0, black pixels = 1 
       flipright=1-rightpoints; 
        
       %if all elements in flipright or flipleft are white (0), then this 
       %termination is on the edge of the image and should be removed 
        
       if (sum(flipleft)==0) || (sum(flipright)==0) 
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           ym(rowcount,4)=0;    %change termination type, indicating it should be deleted 
       end 
        
   else     %search up and down, ensuring that the search window stays  
       %within the dimensions of the thinned image, and the search length  
       %doesn't exceed the value of searchlength defined previously 
       sup=min((rstart-1),searchlength); 
       sdown=min((thinrow-rstart),searchlength); 
       uppoints=xthin(rstart-sup:rstart-1,cstart); 
       downpoints=xthin(rstart+1:rstart+sdown,cstart); 
        
       flipup=1-uppoints;       %now, white pixels = 0, black pixels = 1 
       flipdown=1-downpoints; 
        
       if (sum(flipup)==0) || (sum(flipdown)==0) 
           ym(rowcount,4)=0;    %change termination type, indicating it should be deleted 
       end 
        
   end 
 
   rowcount=rowcount+1; 
   if rowcount <= mrows 
        checktype=mdata(rowcount,4); 
   end 
end 
 
delrow=find(ym(:,4)==0); 
ym(delrow,:)=[];     %delete rows with 0 in 4th column 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

• generate_templates.m 
 
%----------------------------------------------------------------------------------------------------- 
% This program generates the template data for the database of synthetic 
% images 
% ----------------------------------------------------------------------------------------------------- 
% Output: Saved template data in matrix format 
% 
% Author: Graig Diefenderfer 
% Date: May 2006 
%----------------------------------------------------------------------------------------------------- 
 
clear 
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t1_total=0; 
t2_total=0; 
 
for k=0:59 
    k 
    if k < 10   %number is only one character 
        newfilename=['s000',num2str(k),'_1.bmp']; 
    else        %number is two characters 
        newfilename=['s00',num2str(k),'_1.bmp']; 
    end 
     
    %Perform central thinning 
    tic 
    templatedata=get_minutiae_data(newfilename,1);     
    save([newfilename(1:5),'_t.mat'],'templatedata') 
    t1=toc; 
    t1_total=t1_total+t1;   %Track total elapsed time for central thinning 
     
    %Perform boundary block thinning 
    tic 
    templatedata=get_minutiae_data(newfilename,2);     
    save([newfilename(1:5),'_t2.mat'],'templatedata') 
    t2=toc; 
    t2_total=t2_total+t2;   %Track total elapsed time for block thinning 
     
end 
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